-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathreferences.bib
420 lines (383 loc) · 15.2 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
% L96 Jupyter Book
@article{christensen2022parametrization,
title={Parametrization in weather and climate models},
author={Christensen, Hannah and Zanna, Laure},
year={2022},
publisher={Oxford University Press}
}
@article{Lorenz1995,
title = {Predictability: a problem partly solved},
journal = {Seminar on Predictability},
volume = {1},
year = {1995},
pages = {1-18},
publisher = {ECMWF},
organization = {ECMWF},
address = {Shinfield Park, Reading},
url = {https://www.ecmwf.int/node/10829},
author = {Lorenz, E.N.}
}
@article{Wilks2005,
doi = {10.1256/qj.04.03},
url = {https://doi.org/10.1256/qj.04.03},
year = {2005},
publisher = {Wiley},
volume = {131},
number = {606},
pages = {389--407},
author = {Daniel S. Wilks},
title = {Effects of stochastic parametrizations in the Lorenz {\textquotesingle}96 system},
journal = {Quarterly Journal of the Royal Meteorological Society}
}
@article{Arnold2013,
doi = {10.1098/rsta.2011.0479},
url = {https://doi.org/10.1098/rsta.2011.0479},
year = {2013},
publisher = {The Royal Society},
volume = {371},
number = {1991},
pages = {20110479},
author = {H. M. Arnold and I. M. Moroz and T. N. Palmer},
title = {Stochastic parametrizations and model uncertainty in the Lorenz '96 system},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Brajard2021,
doi = {10.1098/rsta.2020.0086},
url = {https://doi.org/10.1098/rsta.2020.0086},
year = {2021},
month = feb,
publisher = {The Royal Society},
volume = {379},
number = {2194},
pages = {20200086},
author = {Julien Brajard and Alberto Carrassi and Marc Bocquet and Laurent Bertino},
title = {Combining data assimilation and machine learning to infer unresolved scale parametrization},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Schneider2017,
doi = {10.1002/2017gl076101},
url = {https://doi.org/10.1002/2017gl076101},
year = {2017},
month = dec,
publisher = {American Geophysical Union ({AGU})},
volume = {44},
number = {24},
author = {Tapio Schneider and Shiwei Lan and Andrew Stuart and Jo{\~{a}}o Teixeira},
title = {Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations},
journal = {Geophysical Research Letters}
}
@article{Russell2017,
doi = {10.1016/j.cpc.2017.08.011},
url = {https://doi.org/10.1016/j.cpc.2017.08.011},
year = {2017},
month = dec,
publisher = {Elsevier {BV}},
volume = {221},
pages = {160--173},
author = {Francis P. Russell and Peter D. D\"{u}ben and Xinyu Niu and Wayne Luk and T.N. Palmer},
title = {Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures},
journal = {Computer Physics Communications}
}
@article{Crommelin2008,
doi = {10.1175/2008jas2566.1},
url = {https://doi.org/10.1175/2008jas2566.1},
year = {2008},
month = aug,
publisher = {American Meteorological Society},
volume = {65},
number = {8},
pages = {2661--2675},
author = {Daan Crommelin and Eric Vanden-Eijnden},
title = {Subgrid-Scale Parameterization with Conditional Markov Chains},
journal = {Journal of the Atmospheric Sciences}
}
@article{Dorrestijn2013,
doi = {10.1098/rsta.2012.0374},
url = {https://doi.org/10.1098/rsta.2012.0374},
year = {2013},
month = may,
publisher = {The Royal Society},
volume = {371},
number = {1991},
pages = {20120374},
author = {J. Dorrestijn and D. T. Crommelin and J. A. Biello and S. J. B\"{o}ing},
title = {A data-driven multi-cloud model for stochastic parametrization of deep convection},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Law2016,
doi = {10.1016/j.physd.2015.12.008},
url = {https://doi.org/10.1016/j.physd.2015.12.008},
year = {2016},
month = jun,
publisher = {Elsevier {BV}},
volume = {325},
pages = {1--13},
author = {K.J.H. Law and D. Sanz-Alonso and A. Shukla and A.M. Stuart},
title = {Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators},
journal = {Physica D: Nonlinear Phenomena}
}
@article{Hatfield2017,
doi = {10.1175/mwr-d-17-0132.1},
url = {https://doi.org/10.1175/mwr-d-17-0132.1},
year = {2017},
month = dec,
publisher = {American Meteorological Society},
volume = {146},
number = {1},
pages = {49--62},
author = {Sam Hatfield and Aneesh Subramanian and Tim Palmer and Peter D\"{u}ben},
title = {Improving Weather Forecast Skill through Reduced-Precision Data Assimilation},
journal = {Monthly Weather Review}
}
@article{Kwasniok2012,
doi = {10.1098/rsta.2011.0384},
url = {https://doi.org/10.1098/rsta.2011.0384},
year = {2012},
month = mar,
publisher = {The Royal Society},
volume = {370},
number = {1962},
pages = {1061--1086},
author = {Frank Kwasniok},
title = {Data-based stochastic subgrid-scale parametrization: an approach using cluster-weighted modelling},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Chorin2015,
doi = {10.1073/pnas.1512080112},
url = {https://doi.org/10.1073/pnas.1512080112},
year = {2015},
month = jul,
publisher = {Proceedings of the National Academy of Sciences},
volume = {112},
number = {32},
pages = {9804--9809},
author = {Alexandre J. Chorin and Fei Lu},
title = {Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics},
journal = {Proceedings of the National Academy of Sciences}
}
@article{Dueben2018,
doi = {10.5194/gmd-11-3999-2018},
url = {https://doi.org/10.5194/gmd-11-3999-2018},
year = {2018},
month = oct,
publisher = {Copernicus {GmbH}},
volume = {11},
number = {10},
pages = {3999--4009},
author = {Peter D. Dueben and Peter Bauer},
title = {Challenges and design choices for global weather and climate models based on machine learning},
journal = {Geoscientific Model Development}
}
@article{Gagne2020,
doi = {10.1029/2019ms001896},
url = {https://doi.org/10.1029/2019ms001896},
year = {2020},
month = mar,
publisher = {American Geophysical Union ({AGU})},
volume = {12},
number = {3},
author = {David John Gagne and Hannah M. Christensen and Aneesh C. Subramanian and Adam H. Monahan},
title = {Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz {\textquotesingle}96 Model},
journal = {Journal of Advances in Modeling Earth Systems}
}
@misc{Simonyan2013,
doi = {10.48550/ARXIV.1312.6034},
url = {https://arxiv.org/abs/1312.6034},
author = {Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps},
publisher = {arXiv},
year = {2013},
copyright = {arXiv.org perpetual, non-exclusive license}
}
@article{Baehrens2010,
author = {David Baehrens and Timon Schroeter and Stefan Harmeling and Motoaki Kawanabe and Katja Hansen and Klaus-Robert M{{\"u}}ller},
title = {How to Explain Individual Classification Decisions},
journal = {Journal of Machine Learning Research},
year = {2010},
volume = {11},
number = {61},
pages = {1803--1831},
url = {http://jmlr.org/papers/v11/baehrens10a.html}
}
@inproceedings{Adebayo2018,
author = {Adebayo, Julius and Gilmer, Justin and Muelly, Michael and Goodfellow, Ian and Hardt, Moritz and Kim, Been},
booktitle = {Advances in Neural Information Processing Systems},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {},
publisher = {Curran Associates, Inc.},
title = {Sanity Checks for Saliency Maps},
url = {https://proceedings.neurips.cc/paper_files/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf},
volume = {31},
year = {2018}
}
@inproceedings{Ancona2018,
title={Towards better understanding of gradient-based attribution methods for Deep Neural Networks},
author={Marco Ancona and Enea Ceolini and Cengiz Öztireli and Markus Gross},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=Sy21R9JAW},
}
@article{Bach2015,
doi = {10.1371/journal.pone.0130140},
author = {Bach, Sebastian AND Binder, Alexander AND Montavon, Grégoire AND Klauschen, Frederick AND Müller, Klaus-Robert AND Samek, Wojciech},
journal = {PLOS ONE},
publisher = {Public Library of Science},
title = {On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation},
year = {2015},
month = {07},
volume = {10},
url = {https://doi.org/10.1371/journal.pone.0130140},
pages = {1-46},
number = {7},
}
@book{Rasmussen_Williams_2005,
title={Gaussian Processes for Machine Learning},
url={http://dx.doi.org/10.7551/mitpress/3206.001.0001},
doi={10.7551/mitpress/3206.001.0001},
publisher={The MIT Press},
author={Rasmussen, Carl Edward and Williams, Christopher K. I.},
year={2005}
}
@book{Bishop2006,
author = {Bishop, Christopher M.},
title = {Pattern Recognition and Machine Learning (Information Science and Statistics)},
year = {2006},
isbn = {0387310738},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg}
}
# m2lines
@article{Shamekh_2023,
doi = {10.22541/essoar.168748456.60017486/v1},
url = {https://doi.org/10.22541%2Fessoar.168748456.60017486%2Fv1},
year = 2023,
month = {jun},
publisher = {Authorea,
Inc.},
author = {Sara Shamekh and Pierre Gentine},
title = {Learning Atmospheric Boundary Layer Turbulence}
}
@article{sane2023parameterizing,
title={Parameterizing Vertical Mixing Coefficients in the Ocean Surface Boundary Layer using Neural Networks},
author={Sane, Aakash and Reichl, Brandon G and Adcroft, Alistair and Zanna, Laure},
journal={arXiv preprint arXiv:2306.09045},
year={2023}
}
@article{Janni2023,
author = {Yuval, Janni and O'Gorman, Paul A.},
title = {Neural-Network Parameterization of Subgrid Momentum Transport in the Atmosphere},
journal = {Journal of Advances in Modeling Earth Systems},
volume = {15},
number = {4},
pages = {e2023MS003606},
keywords = {momentum parameterization, machine learning},
doi = {https://doi.org/10.1029/2023MS003606},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023MS003606},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS003606},
note = {e2023MS003606 2023MS003606},
year = {2023}
}
@article{perezhogin2023generative,
title={Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model},
author={Perezhogin, Pavel and Zanna, Laure and Fernandez-Granda, Carlos},
journal={arXiv preprint arXiv:2302.07984},
year={2023}
}
@article {Zampieri2023,
author = "Lorenzo Zampieri and Gabriele Arduini and Marika Holland and Sarah P. E. Keeley and Kristian Mogensen and Matthew D. Shupe and Steffen Tietsche",
title = "A Machine Learning Correction Model of the Winter Clear-Sky Temperature Bias over the Arctic Sea Ice in Atmospheric Reanalyses",
journal = "Monthly Weather Review",
year = "2023",
publisher = "American Meteorological Society",
address = "Boston MA, USA",
volume = "151",
number = "6",
doi = "https://doi.org/10.1175/MWR-D-22-0130.1",
pages= "1443 - 1458",
url = "https://journals.ametsoc.org/view/journals/mwre/151/6/MWR-D-22-0130.1.xml"
}
@article{Guillaumin2021,
author = {Guillaumin, Arthur P. and Zanna, Laure},
title = {Stochastic-Deep Learning Parameterization of Ocean Momentum Forcing},
journal = {Journal of Advances in Modeling Earth Systems},
volume = {13},
number = {9},
pages = {e2021MS002534},
keywords = {parameterization, mesoscale, deep learning, turbulence, stochastic, Oceans},
doi = {https://doi.org/10.1029/2021MS002534},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002534},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002534},
note = {e2021MS002534 2021MS002534},
year = {2021}
}
# DA
@article{chapman2023benefits,
title={Benefits of Deterministic and Stochastic Tendency Adjustments in a Climate Model},
author={Chapman, William E and Berner, Judith},
journal={arXiv preprint arXiv:2308.15295},
year={2023}
}
@article{gregory2023deep,
title={Deep learning of systematic sea ice model errors from data assimilation increments},
author={Gregory, William and Bushuk, Mitchell and Adcroft, Alistair and Zhang, Yongfei and Zanna, Laure},
journal={Journal of Advances in Modeling Earth Systems},
volume={15},
number={10},
pages={e2023MS003757},
year={2023},
publisher={Wiley Online Library}
}
@misc{gregory2023machine,
title={Machine learning for online sea ice bias correction within global ice-ocean simulations},
author={William Gregory and Mitchell Bushuk and Yongfei Zhang and Alistair Adcroft and Laure Zanna},
year={2023},
eprint={2310.02488},
archivePrefix={arXiv},
primaryClass={physics.ao-ph}
}
# architecture
@article{Frezat2022,
author = {Frezat, Hugo and Le Sommer, Julien and Fablet, Ronan and Balarac, Guillaume and Lguensat, Redouane},
title = {A Posteriori Learning for Quasi-Geostrophic Turbulence Parametrization},
journal = {Journal of Advances in Modeling Earth Systems},
volume = {14},
number = {11},
pages = {e2022MS003124},
keywords = {parametrization, machine learning, turbulence, quasi-geostrophic},
doi = {https://doi.org/10.1029/2022MS003124},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003124},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003124},
note = {e2022MS003124 2022MS003124},
year = {2022}
}
@article{pedersen2023reliable,
title={Reliable coarse-grained turbulent simulations through combined offline learning and neural emulation},
author={Pedersen, Christian and Zanna, Laure and Bruna, Joan and Perezhogin, Pavel},
journal={arXiv preprint arXiv:2307.13144},
year={2023}
}
@article{otness2023data,
title={Data-driven multiscale modeling of subgrid parameterizations in climate models},
author={Otness, Karl and Zanna, Laure and Bruna, Joan},
journal={arXiv preprint arXiv:2303.17496},
year={2023}
}
@article{ross2022benchmarking,
author = {Ross, Andrew and Li, Ziwei and Perezhogin, Pavel and Fernandez-Granda, Carlos and Zanna, Laure},
title = {Benchmarking of machine learning ocean subgrid parameterizations in an idealized model},
journal = {Journal of Advances in Modeling Earth Systems},
year = {2022},
pages = {e2022MS003258},
doi = {https://doi.org/10.1029/2022MS003258},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003258},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003258},
note = {e2022MS003258 2022MS003258}
}
#global models
@article{zhang2023implementation,
title={Implementation and Evaluation of a Machine Learned Mesoscale Eddy Parameterization into a Numerical Ocean Circulation Model},
author={Zhang, Cheng and Perezhogin, Pavel and Gultekin, Cem and Adcroft, Alistair and Fernandez-Granda, Carlos and Zanna, Laure},
journal={arXiv preprint arXiv:2303.00962},
year={2023}
}