-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_train.py
163 lines (132 loc) · 5.63 KB
/
cifar10_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os
import sys
import time
from datetime import datetime
import tensorflow as tf
import lenet
import cifar10_input
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
def train(total_loss, global_step):
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
decay_steps = int(num_batches_per_epoch * FLAGS.decay_epochs)
lr = tf.train.exponential_decay(
learning_rate=FLAGS.learning_rate,
global_step=global_step,
decay_steps=decay_steps,
decay_rate=FLAGS.decay_factor,
staircase=True)
# decayed_learning_rate = learning_rate *
# decay_rate ^ (global_step / decay_steps)
tf.summary.scalar('learning_rate', lr)
opt = tf.train.GradientDescentOptimizer(lr)
gradpairs = opt.compute_gradients(total_loss)
apply_gradient_op = opt.apply_gradients(gradpairs, global_step=global_step)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
for grad, var in gradpairs:
if grad is not None :
tf.summary.histogram(var.op.name + '/gradient', grad)
variable_averages = tf.train.ExponentialMovingAverage(
decay=FLAGS.variable_averages_decay,
num_updates=global_step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variable_averages_op]):
train_op = tf.no_op(name='train')
return train_op
def main(_):
with tf.Graph().as_default():
global_step = tf.contrib.framework.get_or_create_global_step()
filenames = cifar10_input.get_filenames(
data_dir=FLAGS.dataset_dir,
isTrain=True)
images, labels = cifar10_input.load_batch(
filenames=filenames,
batch_size=FLAGS.batch_size,
isTrain=True,
isShuffle=True)
logits, l2_losses = lenet.inference(images, isTrain=True)
total_loss = lenet.loss(logits, labels, l2_losses)
train_op = train(total_loss, global_step)
class _LoggerHook(tf.train.SessionRunHook):
def begin(self):
self._step = -1
self._start_time = time.time()
def before_run(self, run_context):
self._step += 1
return tf.train.SessionRunArgs(total_loss)
def after_run(self, run_context, run_values):
if self._step % FLAGS.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
loss_value = run_values.results
examples_per_sec = FLAGS.log_frequency*FLAGS.batch_size/duration
sec_per_batch = float(duration / FLAGS.log_frequency)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print(format_str % (datetime.now(), self._step, loss_value,
examples_per_sec, sec_per_batch))
with tf.train.MonitoredTrainingSession(
checkpoint_dir=FLAGS.train_dir,
hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
tf.train.NanTensorHook(total_loss),
_LoggerHook()],
config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement)) as mon_sess:
while not mon_sess.should_stop():
mon_sess.run(train_op)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset_dir',
type=str,
default='/home/mattheww/machine_learning/datasets/cifar10/cifar-10-batches-bin',
help='Directory where to load the dataset.')
parser.add_argument(
'--train_dir',
type=str,
default='/home/mattheww/machine_learning/datasets/cifar10/lenet_train_log',
help='Directory where to write event logs')
parser.add_argument(
'--log_device_placement',
type=bool,
default=False,
help='Whether to log device placement.')
parser.add_argument(
'--max_steps',
type=int,
default=30000,
help='Number of batches to run.')
parser.add_argument(
'--batch_size',
type=int,
default=64,
help='Number of images to process in a batch.')
parser.add_argument(
'--log_frequency',
type=int,
default=10,
help='How often to log results to the console.')
parser.add_argument(
'--learning_rate',
type=float,
default=0.1,
help='Initial Learning rate')
parser.add_argument(
'--decay_epochs',
type=float,
default=20.0,
help='Number of epochs per learning rate decay.')
parser.add_argument(
'--decay_factor',
type=float,
default=0.1,
help='Factor of learning rate decay.')
parser.add_argument(
'--variable_averages_decay',
type=float,
default=0.99,
help='Exponential moving average factor of variables.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)