-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGMADC.py
682 lines (535 loc) · 25.1 KB
/
GMADC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#=============================================================================#
# GMADC Algorythm(Its main file to run) #
# To solve random choise on disconected Softwere class graps. #
# By: Masoud Azizi Email: mablue92@gmail.com #
#=============================================================================#
import ntpath
import os
import random
import subprocess
import time
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
# from matplotlib import pyplot as plt
from numpy import inf
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import shortest_path
# from progress.bar import Bar
# for drawing plot
from callgraph import CallGraph
#My text mining algorithm to classify disconnected classes in GMA
from GMADCC import GMADisconnectedClassClassifier as gmadc
newGmadc=None
# To prevent from loops in chain that will make by text similarity
disconnectedClassesIndex=list()
# disSimList: disconnected classes+Similar Classes that obtained form GMADCC (ex: disSimList=[[3,4],[1,3],[0,2]])
disSimList=list()
# disconnected classes index list
dccil = list()
dcSim=list()
dcAndSim = list()
filePaths=None
# search in 2d arrays by value
def index_2d(data, search):
for i, e in enumerate(data):
try:
return i, e.index(search)
except ValueError:
pass
raise ValueError("{} is not in list".format(repr(search)))
# create Similarity Matrix
def createSimilarityMatrix(shortestCallMatrix):
# print("createSimilarityMatrix(shortestCallMatrix)")
tempMatrix = [[0 for i in range (len (shortestCallMatrix))] for i in range (len (shortestCallMatrix))]
v = len (tempMatrix)
maximum = -1
for i in range(0,v):
max_temp = max(shortestCallMatrix[i])
if maximum < max_temp:
maximum = max_temp
if maximum == 0:
print("all classes are in its own cluster!")
exit()
for i in range (0, v):
for j in range (0, v):
if shortestCallMatrix[i][j] == 0 and i !=j:
tempMatrix[i][j] = maximum
else:
tempMatrix[i][j] = shortestCallMatrix[i][j]
for i in range (0,v):
for j in range (0, v):
tempMatrix[i][j] = 1 - tempMatrix[i][j]/maximum
return tempMatrix
# Initializing
def initializing(k , n, similarityMatrix):
# print("initializing")
centers = generateRandomCenter(k, n)
#print(centers)
clusters = fillClustersBasedOnCenter(k, n, similarityMatrix, centers)
return clusters
# Fill Clusters Based On Center
def fillClustersBasedOnCenter(k, n, similarityMatrix, centers):
# print("fillClustersBasedOnCenter(k, n, similarityMatrix, centers)")
disconnectedClassesIndex=list()
for i in range(n): # initialize base step, center of a cluster remains in index 0 of each list
index = 0
clusterNumber = centers[0][0]
maxSimilarity = similarityMatrix[i][clusterNumber]
for j in range(1,k):
clusterNumber = centers[j][0]
###################################################
#############, (#####################
######### #################
######. *#%#, %##############
####/ %############### #############
### ##################### ###########
## ######################### ##########
#& ##########################. ##########
# ########################### ##########
#, ########################### &#########
## ######################### ##########
##& ####################### ###########
#### ################### ############
##### ############* ###########
######## /########
########### # ######
################# ######### ,###
###################################### #
######################################## #
########################################### ####
###################################################
if maxSimilarity < similarityMatrix[i][clusterNumber]:
maxSimilarity = similarityMatrix[i][clusterNumber]
index = j
# print("<",i,j)
# Place that we reach to a disconnected class and MA_MS algo starts his text mining calculation to find a
# similarity between other classes and make a chain with other clusters and disconnected classes
elif maxSimilarity == similarityMatrix[i][clusterNumber] and j==1:
# disconnectedClassesIndex.append(i)
# if disconnectedClassesIndex.count(i)==2:
if i not in dccil:
dccil.append(i)
dcAndSim.append([i,i])
# print(dccil)
# print(dccil)
# print(clusterNumber)
# disconnectedClassesIndex.append(i)
# if disconnectedClassesIndex.count(i)==2:
# print("---------------------------------------------")
# dcsi = newGmadc.getDisconnectedClassCenter(disconnectedClassesIndex,filePaths,clusterNumber)
# if disSimList.count((i,dcsi))<1:
# disSimList.append((i,dcsi))
# print(disconnectedClassesIndex)
# pass
# elif maxSimilarity > similarityMatrix[i][clusterNumber]:
# print(">",i,j)
# pass
# print("filePath(i={},j={})={},MaxSim={},SimMat[{}][{}]={}".format(i,j,filePaths[i],maxSimilarity,i,clusterNumber,similarityMatrix[i][clusterNumber]))
temp = []
temp = centers[index]
if i != temp[0]:
temp.append(i)
centers.pop(index)
centers.insert(index,temp)
# print("i:", i, "index:", index, "sim:", maxSimilarity, "centers:", centers)
return centers
# Generate Random Center
def generateRandomCenter(k, n):
# print("generateRandomCenter(k, n)")
clusters = []
center = random.sample(range(n), k) #create k random center of k-means
#print(center)
for j in range(k): #transform k centers to 2 dimentionals array
c = center.pop(0)
clusters.append([c])
del(center)
#print(clusters)
return clusters
# Copy
def copy(matrix):
# print("copy(matrix)")
l = len(matrix)
temp = []
for i in range(0,l):
temp.append([])
m = len(matrix[i])
for j in range(0,m):
temp[i].append(matrix[i][j])
return temp
# Correct Center
def correctCenter(clusters, similarityMatrix):
# print("correctCenter(clusters, similarityMatrix)")
clustersUpdateCenter = []
for centerIndex in range(k):
clustersBackup = copy(clusters)
popedCluster = clustersBackup.pop(centerIndex)
# print("popedCluster:", popedCluster)
sameSimIndex = [0]
maxSimilarity = 0
for i in range(0, len(popedCluster)):
popedClusterSimilaritySum = 0
for j in range(0, len(popedCluster)):
popedClusterSimilaritySum = popedClusterSimilaritySum + similarityMatrix[popedCluster[i]][popedCluster[j]]
# print(popedCluster[i], ":" , popedClusterSimilaritySum)
if popedClusterSimilaritySum > maxSimilarity:
maxSimilarity = popedClusterSimilaritySum
sameSimIndex.clear()
sameSimIndex.append(i)
elif popedClusterSimilaritySum == maxSimilarity:
sameSimIndex.append(i)
# print(i)
# print(sameSimIndex)
# print("sameSimIndex: ", sameSimIndex, "maxSimilarity: ",maxSimilarity)
if len(sameSimIndex) == 1:
val = popedCluster[sameSimIndex[0]]
# print(popedCluster)
popedCluster.remove(val)
# print(popedCluster)
popedCluster.insert(0, val)
# print(popedCluster)
clustersUpdateCenter.append(popedCluster)
# print("OK, clustersUpdateCenter: ",clustersUpdateCenter,"\n")
elif len(sameSimIndex) > 1:
tempMinOtherSim = n
for i in range(len(sameSimIndex)):
sumOtherSimilarity = 0
val = popedCluster[sameSimIndex[i]]
for j in range(k-1):
for m in range(len(clustersBackup[j])):
sumOtherSimilarity = sumOtherSimilarity + similarityMatrix[val][clustersBackup[j][m]]
# print("val:" ,val, "sumOtherSimilarity:",sumOtherSimilarity)
if tempMinOtherSim > sumOtherSimilarity:
tempMinOtherSim = sumOtherSimilarity
tempVal = val
# print("tempVal:", tempVal)
popedCluster.remove(tempVal)
popedCluster.insert(0, tempVal)
clustersUpdateCenter.append(popedCluster)
# print("NOK, clustersUpdateCenter: ",clustersUpdateCenter,"\n")
return clustersUpdateCenter
# Compute Similarity Function
def computeSimilarityFunction(matrix , similarityMatrix):#sum of similarity of all clusters
# print("computeSimilarityFunction(matrix , similarityMatrix)")
function = 0
for i in range(k):
for j in range(1, len(matrix[i])):
function = function + similarityMatrix[matrix[i][0]][matrix[i][j]]
return function
# Clustering
def clustering(k, n, similarityMatrix, clustersUpdateCenter):
# print("clustering(k, n, similarityMatrix, clustersUpdateCenter)")
clusterOld = copy(clustersUpdateCenter)
iteration = 0
flag = 0
while iteration <1000 and flag < 5:
iteration = iteration + 1
clusterNew = []
# print("old:", id(clusterOld), "new:", id(clusterNew) , "d:", id(clusterOld)-id(clusterNew),"\n")
for i in range(k):
clusterNew.append([clusterOld[i][0]])
# print(centerUpdate)
clusterNew = fillClustersBasedOnCenter(k, n, similarityMatrix, clusterNew)
# print("clusterNew: ",clusterNew)
# similarityFunctionUpdate = computeSimilarityFunction(clusterNew, similarityMatrix)
# print("similarityFunctionUpdate: ",similarityFunctionUpdate,"\n")
clusterNew = correctCenter(clusterNew, similarityMatrix)
# print("clustersUpdateCenter: ",clusterNew)
# similarityFunctionUpdate = computeSimilarityFunction(clusterNew, similarityMatrix)
# print("similarityFunctionUpdate: ",similarityFunctionUpdate,"\n")
# check for continuing
tempNew = copy(clusterNew)
tempOld = copy(clusterOld)
# print(id(tempNew),id(tempOld),id(clusterNew),id(clusterOld))
for i in range(len(tempNew)):
tempNew[i].sort()
tempNew.sort()
# print("Sorted New: ", tempNew)
for i in range(len(tempOld)):
tempOld[i].sort()
tempOld.sort()
# print("Sorted Old: ", tempOld)
# print()
if(tempNew == tempOld):
flag = flag + 1
del(tempNew)
del(tempOld)
clusterOld = copy(clusterNew)
return clusterNew
# Unused
# Exporting To MoJo Format Algorithm Manual
def exportingToMoJoFormatAlgorithmManual(k, n, clustersFinal):
# print("exportingToMoJoFormatAlgorithmManual(k, n, clustersFinal)")
for i in range(k):
clustersFinal[i].sort()
clustersFinal.sort()
f1 = open ("MoJoAlgorithmManual.txt", "w")
for centerIndex in range(k):
for i in range(len(clustersFinal[centerIndex])):
f1.write("contain ")
f1.write("hulu")
f1.write(str(centerIndex))
f1.write(" ")
f1.write(str(clustersFinal[centerIndex][i]))
f1.write("\n")
f1.close()
# exportingToMoJoFormatExpert
def exportingToMoJoFormatExpert(fileNames, filePathNames, folderPathResult):
# print("exportingToMoJoFormatExpert(fileNames, filePathNames, folderPathResult)")
temp = []
for i in range(len(fileNames)):
# temp[i][1] = fileNames[i]
indexCluster = findInTofilePtheNames (fileNames[i], filePathNames)
if indexCluster == -1:
print("Cluster Conflict class ", fileNames[i])
return
# temp[i][0] = filePathNames[indexCluster][0]
temp.append([filePathNames[indexCluster][0], fileNames[i]])
temp.sort()
f1 = open (folderPathResult + "/MoJoExpert.txt", "w")
for i in range(len(fileNames)):
f1.write("contain ")
f1.write(temp[i][0])
f1.write(" ")
f1.write(temp[i][1])
f1.write("\n")
f1.close()
del(temp)
# findInTofilePtheNames
def findInTofilePtheNames (className, filePathNames):
# print("findInTofilePtheNames (className, filePathNames)")
index = -1
for i in range(len(filePathNames)):
if className == filePathNames[i][1] or className == filePathNames[i][2]:
if index == -1:
index = i
else:
return -1
return index
# findInTofilePtheNames
def exportingToMoJoFormatAlgorithm(k, n, clustersFinal, fileNames, filePathNames, run_no, folderPathResult):
# print("exportingToMoJoFormatAlgorithm(k, n, clustersFinal, fileNames, filePathNames, run_no, folderPathResult)")
f1 = open (folderPathResult + "/MoJoAlgorithm" + str(k) + "_" + str(run_no) + ".txt" , "w")
for centerIndex in range(k):
for i in range(len(clustersFinal[centerIndex])):
f1.write("contain ")
f1.write("hulu")
f1.write(str(centerIndex))
f1.write(" ")
f1.write(fileNames[clustersFinal[centerIndex][i]])
f1.write("\n")
f1.close()
# Start
cvsFilePathString = []
pathResultString = []
# print("for root, dirs, files in os.walk(\"CaseStudies\")")
for root, dirs, files in os.walk("CaseStudies"):
for file in files:
if file.endswith(('.csv')):
cvsFilePath=os.path.join(root, file)
cvsFilePathString.append(cvsFilePath)
resultPath = os.path.join(root,"../result",file)
pathResultString.append(resultPath)
if not os.path.isdir(resultPath):
os.makedirs(resultPath)
# print("for i in range (len(pathResultString))")
for i in range (len(pathResultString)):
if not os.path.isdir(pathResultString[i]):
os.mkdir(pathResultString[i])
# print("for cvsFileNumber in range (0,len(cvsFilePathString))")
for cvsFileNumber in range (0,len(cvsFilePathString)):
dcSim=list()
cvsFp=cvsFilePathString[cvsFileNumber]
df = pd.read_csv(cvsFp)
df.fillna(0, inplace = True)
sourceCodeFp="SourceCodes/{}.src/".format(ntpath.basename(cvsFp)[0:-4])
filePaths= [sourceCodeFp+n for n in list(df.columns.values[1:])]
newGmadc = gmadc(filePaths)
fileDirs=["'{}'".format(os.path.dirname(path)).replace(" ","%20") for path in filePaths]
fileNames=list(["'{}'".format(ntpath.basename(path)) for path in filePaths])
fileExts=list([os.path.splitext(name)[1] for name in fileNames])
df.drop(df.columns[0], axis=1, inplace=True)
cdgNonSquer=df.to_numpy()
cdgNonSquerMaxLen=max(len(cdgNonSquer[0,:]),len(cdgNonSquer[:,0]))
# print(cdgNonSquerMaxLen,len(cdgNonSquer[0,:]),len(cdgNonSquer[:,0]))
cdgNonSymetric=np.resize(cdgNonSquer,(cdgNonSquerMaxLen,cdgNonSquerMaxLen))
SymetricCDG = np.maximum( cdgNonSymetric, cdgNonSymetric.transpose() )
# print("SymetricCDG\n",SymetricCDG)
timeInit = 0
timeClustering = 0
timeTotal = 0
filePathNames = [[fileDirs[i],fileNames[i],fileNames[i]] for i in range(len(fileNames))]
# print(np.corrcoef(callMatrix))
# print(filePathNames)
print(cvsFilePathString[cvsFileNumber]+":\tinput files completed :)")
exportingToMoJoFormatExpert(fileNames, filePathNames, pathResultString[cvsFileNumber])
print(cvsFilePathString[cvsFileNumber]+":\texporting to MoJo format for expert completed :)")
time1 = time.time()
time2 = time.time()
timeInit = time2 - time1
print(cvsFilePathString[cvsFileNumber]+":\tgenerating call matrix to symmetric completed :)")
csrCDG = csr_matrix(SymetricCDG)
# print("csrCDG\n", csrCDG)
#############
##########
##########
############
####### ##
## ####### ##
###### ####### #####
########### ####### #######
######## ####### ####### ########
####### ########## ## ########
##### ### ##### ##### ########
###### ### # ####### ########
####### ####### ####### ########
####### ####### ####### ########
####### ####### ####### ########
####### ####### ####### ########
####### ####### ####### ########
####### ####### ####### ########
# to draw the plot
cg = CallGraph(csrCDG )
cg.draw()
dist_matrix = shortest_path(csgraph=csrCDG,method='FW')# FW: floydwarshal
dist_matrix[dist_matrix == inf] = 0
# print(dist_matrix)
# Similarity Matrix Calculation
similarityMatrix = cosine_similarity(dist_matrix)
# print("for i in range(len(similarityMatrix))")
for i in range(len(similarityMatrix)):
similarityMatrix[i][i]=1
# np.savetxt('cosine_similarity.csv', similarityMatrix, delimiter=',', fmt='%s')
# print("simMtx\n",similarityMatrix)
# similarityMatrix = createSimilarityMatrix(dist_matrix)
time1 = time.time()
time2 = time.time()
timeInit = timeInit + time2 - time1
print(cvsFilePathString[cvsFileNumber]+":\tcalculating shortest path matrix completed :)")
time1 = time.time()
# similarityMatrix = createSimilarityMatrix(dist_matrix)
# np.savetxt('createSimilarityMatrix.csv', similarityMatrix, delimiter=',', fmt='%s')
# print(np.array(similarityMatrix))
time2 = time.time()
timeInit = timeInit + time2 - time1
print(cvsFilePathString[cvsFileNumber]+":\tforming similarity completed :)")
# print(similarityMatrix)
n = len(SymetricCDG) # number of elements
result = []
maxRunNo = 1 # default: maxRunNo = 30
maxK = 3 # default:
maxK = int(min(int(n/3), 100))
# bar = Bar('Processing', max=maxK*maxRunNo)
# Mohem
# print("for run_no in range (1,maxRunNo+1)")
for run_no in range (1,maxRunNo+1):
# print("for k in range (2,maxK + 1)")
for k in range (2,maxK + 1):
print("Progress: {}/{},{}/{},{}/{} ".format(cvsFileNumber,len(cvsFilePathString),run_no,(maxRunNo),k,(maxK)))
# bar.next()
time1 = time.time()
clustersInit = initializing(k , n, similarityMatrix)
# print("After initializing:\nclusters: ",clustersInit)
# print("initializing culsters completed :)")
# similarityFunction = computeSimilarityFunction(clustersInit, similarityMatrix)
# print("similarityFunction:",similarityFunction,"\n")
clustersUpdateCenter = correctCenter(clustersInit, similarityMatrix)
# print("clustersUpdateCenter: ",clustersUpdateCenter)
# similarityFunctionUpdate = computeSimilarityFunction(clustersUpdateCenter, similarityMatrix)
# print("similarityFunctionUpdate: ",similarityFunctionUpdate)
clustersFinal = clustering(k, n, similarityMatrix, clustersUpdateCenter)
#####################################, ############
##################################### &########
##################################### .#####
#, ###########( ##
#, ###### #
#############( .## ,###### %####
### ###### ##. ,& *######## ########
# *########## &## # ########## %###########
# ############ ###( %#########################
# *###& .#### &## # ##########&%############
### ###### ##, # ######### #########
############## .## ####### &#####
#, ###### *##
#, ########### #
##################################### ####
##################################### &#######
##################################### .###########
# print("1.clustersFinal\n",len(clustersFinal),clustersFinal)
if len(dcSim)==0:
for dc in range(len(dccil)):
sim = 0
for cl in range(n):
if newGmadc.getSim(dc,cl)>sim: # and dccil[dc]!=cl:
sim = newGmadc.getSim(dccil[dc],cl)
if len(dcSim)>dc:
dcSim[dc]=cl
else:
dcSim.append(cl)
# print(dcSim)
# print(clustersFinal)
for dc in range(min(len(dcSim), len(dccil))):
DCposition = index_2d(clustersFinal, dccil[dc])
# print("dc: ",dc,"\nlen(dccil): ",len(dccil),"\nlen(dcSim): ",len(dcSim))
DSposition = index_2d(clustersFinal, dcSim[dc])
clustersFinal[DSposition[0]].append(clustersFinal[DCposition[0]].pop(DCposition[1]))
print(" {}({})\t-->\t{}({})\t(Disconnected class: {},\tmoved to cluster of it's must similar class: {})" \
.format(DCposition[0],dccil[dc],
DSposition[0],dcSim[dc],
fileNames[dccil[dc]],
fileNames[dcSim[dc]]
))
dccil=list()
###################################################
time2 = time.time()
timeClustering = time2 - time1
timeTotal = timeInit + timeClustering
# i disabled it
# print(cvsFilePathString[cvsFileNumber]+ ":\tclustering completed at k = " + str(k)+ " and in run = " + str(run_no) + " :)")
# exportingToMoJoFormatAlgorithmManual(k, n, clustersFinal)
# print("exporting to MoJo format algorithm manually completed :)")
exportingToMoJoFormatAlgorithm(k, n, clustersFinal, fileNames, filePathNames, run_no, pathResultString[cvsFileNumber])
# print("exporting to MoJo format algorithm completed :)")
MoJoAlgorithmPath ="{}/MoJoAlgorithm{}_{}.txt".format(pathResultString[cvsFileNumber],k,run_no)
MoJoExpertPath= "{}/MoJoExpert.txt".format(pathResultString[cvsFileNumber])
# print(run_no,k,cvsFileNumber,MoJoAlgorithmPath,MoJoExpertPath)
proc = subprocess.Popen(["java", "mojo/MoJo", MoJoAlgorithmPath , MoJoExpertPath], stdout=subprocess.PIPE)
outs, errs = proc.communicate()
mojoMeasure = int(outs[:-1])
proc = subprocess.Popen(["java", "mojo/MoJo", MoJoAlgorithmPath , MoJoExpertPath,"-fm"], stdout=subprocess.PIPE)
outs, errs = proc.communicate()
mojoFmMeasure = float(outs[:-1])
# print(mojoFmMeasure)
result.append([run_no,k,mojoMeasure,mojoFmMeasure,timeInit,timeClustering,timeTotal])
# print(result)
# bar.finish()
outputFileResult = open (pathResultString[cvsFileNumber] + "/result.txt", "w")
outputFileResult.write("RunNO\tK\tMoJo\tMoJo fm\tTime Init\tTime Clustering\tTime Total\n")
# print("outputFileResult")
mj,mjfm=list(),list()
for i in range (0, maxRunNo * (maxK-1)):
outputFileResult.write(
"{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(
result[i][0],
result[i][1],
result[i][2],
result[i][3],
result[i][4],
result[i][5],
result[i][6]
))
mjfm.append(result[i][3])
mj.append(result[i][2])
outputFileResult.close()
print("min(mj): ",min(mj))
print("max(mjfm): ",max(mjfm))
outputFileResult.close()
del fileNames
del filePathNames
del cdgNonSymetric
del SymetricCDG
del similarityMatrix
del dist_matrix
del clustersFinal
del clustersInit
del clustersUpdateCenter