-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
102 lines (76 loc) · 3.34 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from config import *
def dice_coef_metric(pred, label):
intersection = 2.0 * (pred * label).sum()
union = pred.sum() + label.sum()
if pred.sum() == 0 and label.sum() == 0:
return 1.
return intersection / union
def dice_coef_loss(pred, label):
smooth = 1.0
intersection = 2.0 * (pred * label).sum() + smooth
union = pred.sum() + label.sum() + smooth
return 1 - (intersection / union)
def bce_dice_loss(pred, label):
dice_loss = dice_coef_loss(pred, label)
bce_loss = nn.BCELoss()(pred, label)
return dice_loss + bce_loss
def train_loop(device ,model , loader, loss_func, optimizer):
model.train()
train_losses = []
train_dices = []
for i, (image, mask) in enumerate(tqdm(loader)):
#for i, (image, mask) in enumerate(loader):
image = image.to(device)
mask = mask.to(device)
outputs = model(image)
out_cut = np.copy(outputs.data.cpu().numpy())
out_cut[np.nonzero(out_cut < 0.5)] = 0.0
out_cut[np.nonzero(out_cut >= 0.5)] = 1.0
dice = dice_coef_metric(out_cut, mask.data.cpu().numpy())
loss = loss_func(outputs, mask)
train_losses.append(loss.item())
train_dices.append(dice)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return train_dices, train_losses
def eval_loop(device, model, loader, loss_func, scheduler, training=True):
model.eval()
val_loss = 0
val_dice = 0
with torch.no_grad():
for step, (image, mask) in enumerate(loader):
image = image.to(device)
mask = mask.to(device)
outputs = model(image)
loss = loss_func(outputs, mask).data.cpu().numpy()
out_cut = np.copy(outputs.data.cpu().numpy())
out_cut[np.nonzero(out_cut < 0.5)] = 0.0
out_cut[np.nonzero(out_cut >= 0.5)] = 1.0
dice = dice_coef_metric(out_cut, mask.data.cpu().numpy())
#accuracy
val_loss += loss
val_dice += dice
val_mean_dice = val_dice / step
val_mean_loss = val_loss / step
if training:
scheduler.step(val_mean_dice)
return val_mean_dice, val_mean_loss
def train_model(device, model, train_loader, val_loader, loss_func, optimizer, scheduler):
train_loss_history = []
train_dice_history = []
val_loss_history = []
val_dice_history = []
for epoch in range(num_epochs):
train_dices, train_losses = train_loop(device, model, train_loader, loss_func, optimizer)
train_mean_dice = np.array(train_dices).mean()
train_mean_loss = np.array(train_losses).mean()
val_mean_dice, val_mean_loss = eval_loop(device, model, val_loader, loss_func, scheduler)
train_loss_history.append(np.array(train_losses).mean())
train_dice_history.append(np.array(train_dices).mean())
val_loss_history.append(val_mean_loss)
val_dice_history.append(val_mean_dice)
print(f'\nEpoch step: {epoch+1}/{num_epochs}\nTrain Loss: {train_mean_loss:.3f}\nValidation Loss: {val_mean_loss:.3f}')
print(f'Train DICE: {train_mean_dice:.3f}\nValidation DICE: {val_mean_dice:.3f}\n')
print("="*50)
return train_loss_history, train_dice_history, val_loss_history, val_dice_history