-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweirules.py
386 lines (326 loc) · 14.4 KB
/
weirules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import numpy as np
from torch import nn,from_numpy
import torch.nn.functional as F
import torch
from torch.utils import data
from sklearn.utils import class_weight
from sklearn import tree
from sklearn.tree import _tree
from sklearn.metrics import classification_report
import sys
import copy
from torch import autograd
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
from sklearn.tree import export_text
def best_tree(x,y,s,e, criterion,class_val=None):
best_n=s
best_s=0
for n in range(s,e):
skf = StratifiedKFold(n_splits=5,random_state=0, shuffle=True)
scores=[]
for train_index, test_index in skf.split(x, y):
X_train, X_test = x.iloc[train_index], x.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
clf=tree.DecisionTreeClassifier(criterion=criterion, max_depth=n)
clf = clf.fit(X_train, y_train)
preds=clf.predict(X_test)
if not class_val == None:
scores.append(classification_report(y_test, preds,output_dict=True)[str(class_val)]['f1-score'])
else:
scores.append(classification_report(y_test, preds,output_dict=True)['macro avg']['f1-score'])
avg=sum(scores)/len(scores)
if avg > best_s:
best_s=avg
best_n=n
return best_n
class minmax(nn.Module):
def __init__(self, input_dim, output_dim, rho):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.rho = rho
self.weight = torch.nn.Parameter(torch.ones(output_dim, input_dim))
self.register_parameter('bias', None)
def forward(self, input):
_, y = input.shape
if y != self.input_dim:
sys.exit(f'Wrong Input Features. Please use tensor with {self.input_dim} Input Features')
x = torch.exp(self.rho*input)
w_normalized = F.softmax(self.weight,dim=1)
x = F.linear(x,w_normalized)
x = (1/self.rho)*torch.log(x+1e-8)
return x
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.input_dim, self.output_dim, self.bias is not None
)
class Network(nn.Module):
def __init__(self,
slopes_len,
class_num,
weirules_inst,
rulesets,
classes,
rho=14):
super().__init__()
self.class_num = class_num
self.weirules_inst = weirules_inst
self.slopes_len=slopes_len
self.rulesets=rulesets
self.classes=classes
self.rho=14
flatten_size=1024
med_size_2 = 512
#--------------------------------------------------------------
# convolutional branch
self.conv1 = nn.Conv2d(256,256,1)
self.conv2 = nn.Conv2d(256,256,1)
self.dropout2d_1 = nn.Dropout2d(p=0.2)
self.batchnorm2d1 = nn.BatchNorm2d(256)
self.batchnorm2d2 = nn.BatchNorm2d(256)
self.c_hidden_1 = nn.Linear(12544, flatten_size)
self.batchnorm1d_c1 = nn.BatchNorm1d(flatten_size)
# merge
self.layer1 = nn.Linear(flatten_size, med_size_2)
self.batchnorm1d_4 = nn.BatchNorm1d(med_size_2)
self.merge_hidden = nn.Linear(med_size_2, self.slopes_len)
self.ors= nn.ModuleList([minmax(len(self.weirules_inst.rulesets[c]),1,self.rho) for c in self.weirules_inst.en_classes])
self.relu = F.relu
self.lrelu = nn.LeakyReLU()
def forward(self, deep_input, rule_input=None):
if rule_input==None:
rule_input=deep_input
# convolutional input
cx = self.conv1(deep_input)
cx = self.batchnorm2d1(cx)
cx = self.relu(cx)
cx = self.conv2(cx)
cx = self.batchnorm2d2(cx)
cx = self.relu(cx)
cx = cx.flatten(start_dim=1)
cx = self.c_hidden_1(cx)
cx = self.batchnorm1d_c1(cx)
cx = self.relu(cx)
#non conv
x = self.layer1(cx)
x = self.batchnorm1d_4(x)
x = self.relu(x)
o2 = self.merge_hidden(x)
o2 = self.lrelu(o2)
ruleset_results_batch = self.weirules_inst.compute_ruleset_vector(rule_input,o2)
all_softmax_results = self.rule_inference(ruleset_results_batch, self.classes, self.rulesets, ors=self.ors,rho=self.rho)
return all_softmax_results
def rule_inference(self,ruleset_results_batch, classes, rulesets, ors, rho=14):
rsr_s=0
and_rho=-rho
class_rules_results=[]
#loop over class cases
c=0
for class_name in classes:
class_ruleset_lens = [len(x) for x in rulesets[class_name]]
ruleset_offset = sum(class_ruleset_lens)
ruleset_results=ruleset_results_batch[:,rsr_s:rsr_s+ruleset_offset] #results from current rule
rw_s=0
#loop over conditions of rule
ruleset_anded_results=[]
for number_of_comps in class_ruleset_lens:
rule_results_tensor=ruleset_results[:,rw_s:rw_s+number_of_comps]
#------- compute and operation for comparisons of this condition ---------
N=rule_results_tensor.shape[1]
rule_anded_result=torch.clamp(weighted_exponential_mean(rule_results_tensor, N, and_rho), min = 0, max = 1)
ruleset_anded_results.append(rule_anded_result)
# advance weight index
rw_s+=number_of_comps
#create tensor containing results of all conditions
all_rules=torch.stack(ruleset_anded_results,dim=1)
#------ or operation among all rules -------
N = all_rules.shape[1]
or_val = ors[c](all_rules).reshape(-1)
class_rules_results.append(or_val)
rsr_s+=ruleset_offset
c+=1
class_rule_values=torch.stack(class_rules_results, dim=1)
return class_rule_values
def cross_entropy(self, w, l):
#normalize
if self.weirules_inst.use_weights==True:
tensor_class_weights=torch.tensor(self.weirules_inst.class_weights).float().to(self.weirules_inst.device)
return F.nll_loss(torch.log(F.normalize(w, p=1 ,dim=1)+1e-8), l, weight=tensor_class_weights)
else:
return F.nll_loss(torch.log(F.normalize(w, p=1 ,dim=1)+1e-8), l)
class weirules():
def __init__(self, rule_learner='tree', use_weights=False):
self.en_classes=[]
self.rulesets={}
self.all_comps={}
self.mapping=None
self.model=None
self.rule_learner=rule_learner
self.use_weights=use_weights
self.rule_cols_index=None
self.df_cols_index=None
self.rule_clf=None
self.rule_lens=[]
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda:0" if use_cuda else "cpu")
def column_map(self,name):
return self.mapping[name] #index
def sigmf(self,x,a,c):
val = torch.sigmoid(a * (x - c))
return val
def compute_ruleset_vector(self,X,slopes=None):
result_vector_len=0
for class_value in self.en_classes:
classModel=self.rulesets[class_value]
for rule in classModel:
result_vector_len+=len(rule)
all_weighted_results=torch.zeros([len(X),result_vector_len]).to(self.device)
t_index=0
s_index=0
for class_value in self.en_classes:
comp_index=0
for comp in self.all_comps[class_value]:
[feature,op,value]=comp
col_index=self.column_map(feature)
if op == '<=':
all_weighted_results[:,t_index+comp_index]=self.sigmf(-X[:,col_index],slopes[:,s_index+comp_index],-float(value))
elif op == '>':
all_weighted_results[:,t_index+comp_index]=self.sigmf(X[:,col_index],slopes[:,s_index+comp_index],float(value))
comp_index+=1
s_index+=comp_index
t_index+=comp_index
return all_weighted_results
def fit_tree(self,
X, # train X DATA
Y, # train Class data
en_classes, # list of the classes
rule_columns, # list containing the feature names
max_depth=None, # max depth for dt training
criterion='gini', # dt split criterion
find_best_tree=False,
forest=False
):
X_rules = X[rule_columns]
self.rule_cols_index = [X.columns.get_loc(c) for c in rule_columns]
self.mapping = dict([(X_rules.columns[i],i) for i in range(len(list(X_rules.columns)))])
self.mapping = dict([(X_rules.columns[i],i) for i in range(len(list(X_rules.columns)))])
self.en_classes=en_classes
self.class_weights=None
if self.use_weights:
self.class_weights = class_weight.compute_class_weight(class_weight='balanced',
classes= en_classes,
y=Y)
self.slope_vector_length = 0
rulesets={}
if find_best_tree:
if max_depth==None:
print("Warning: max_depth was set to 30.")
max_depth=30
if not forest==True:
Y_cls=Y.copy()
best_depth = best_tree(X_rules, Y_cls,2, max_depth,criterion)
clf = tree.DecisionTreeClassifier(criterion=criterion, max_depth=best_depth)
clf = clf.fit(X_rules, Y_cls)
self.clf=clf
treecode=tree_to_rules(clf,X_rules.columns)
for class_value in self.en_classes:
rulesets[class_value]=treecode[class_value]
else:
for class_value in self.en_classes:
Y_cls=Y.copy()
Y_cls[Y_cls!=class_value]=-1
best_depth = best_tree(X_rules, Y_cls,2, max_depth,criterion,class_value)
#print(best_depth)
clf = tree.DecisionTreeClassifier(criterion=criterion, max_depth=best_depth)
clf = clf.fit(X_rules, Y_cls)
rulesets[class_value]=tree_to_rules(clf,X_rules.columns)[class_value]
else:
if not forest==True:
Y_cls=Y.copy()
clf = tree.DecisionTreeClassifier(criterion=criterion, max_depth=max_depth)
clf = clf.fit(X_rules, Y_cls)
self.clf=clf
treecode=tree_to_rules(clf,X_rules.columns)
for class_value in self.en_classes:
rulesets[class_value]=treecode[class_value]
else:
for class_value in self.en_classes:
Y_cls=Y.copy()
Y_cls[Y_cls!=class_value]=-1
clf = tree.DecisionTreeClassifier(criterion=criterion, max_depth=max_depth)
clf = clf.fit(X_rules, Y_cls)
rulesets[class_value]=tree_to_rules(clf,X_rules.columns)[class_value]
self.rulesets=rulesets
for class_value in self.en_classes:
classModel=self.rulesets[class_value]
cond_lens=[]
for cond in classModel:
self.slope_vector_length+=len(cond)
cond_lens.append(len(cond))
for comp in cond:
if not class_value in self.all_comps:
self.all_comps[class_value]=[comp]
else:
self.all_comps[class_value].append(comp)
self.rule_lens.append(cond_lens)
def get_fuzzified_rule_str(self, class_name):
class_model=self.rulesets[class_name]
weights=F.softmax(self.model.ors[class_name].weight,dim=1)
rule='IF\n\t'
w_index=0
conds=[]
for cond in class_model:
cu_cond=f"{weights[0][w_index]} * ("
comps=[f"{comp[0]} {comp[1]} {comp[2]}" for comp in cond]
comp_str=" AND' ".join(comps)
conds.append(cu_cond+comp_str+')')
w_index+=1
rule+="\n\t OR' ".join(conds)
rule+=f"\nTHEN {class_name}"
return rule
def create_network(self, rho=14):
self.model = Network(slopes_len = self.slope_vector_length,
class_num=len(self.en_classes),
weirules_inst=self,
rulesets=self.rulesets,
classes=self.en_classes,
rho=rho)
self.model.float()
self.model.to(self.device)
def forward_model(self, Xdf, Xrule):
all_softmax_results = self.model.forward(Xdf, Xrule)
return all_softmax_results
def load_model(self,path):
self.model.load_state_dict(torch.load(path))
def weighted_exponential_mean(X, N, rho, W = None):
if (W == None):
return (1/rho)*torch.log((1/N) *torch.sum(torch.exp(rho*X),dim=1)+1e-8)
else:
return (1/rho)*torch.log(torch.sum(W*torch.exp(rho*X),dim=1)+1e-8)
def tree_to_rules(tree, feature_names):
#tree_rules = export_text(tree)
#print(tree_rules)
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
classes = tree.classes_
def recurse(node, rule_list, rulesets):
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
rule_list_l=rule_list+[[name, '<=',threshold]]
recurse(tree_.children_left[node],rule_list_l,rulesets)
rule_list_r=rule_list+[[name, '>',threshold]]
recurse(tree_.children_right[node],rule_list_r,rulesets)
else:
class_value=classes[np.argmax(tree_.value[node])]
if class_value in rulesets:
rulesets[class_value].append(rule_list)
else:
rulesets[class_value]=[rule_list]
rulesets={}
recurse(0, [], rulesets)
return rulesets