-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrectangle.py
505 lines (417 loc) · 16.6 KB
/
rectangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# Much of this code was not so casually ported from
#
# https://flathead.ornl.gov/repos/TranslationService/trunk/sns-translation-client/sns-translation-core/src/main/java/gov/ornl/sns/translation/geometry/calc/helpers/RectCorners.java
#
from __future__ import print_function
import math
import numpy as np
try:
from string import maketrans # python2
except ImportError:
maketrans = str.maketrans # python3
HAS_LXML = True
try:
from lxml import etree as le # python-lxml on rpm based systems
except ImportError:
print("WARNING: Failed to load lxml. Xml output turned off for rectangle.py")
HAS_LXML = False
TOLERANCE = .0001
class Vector:
"""
This class encapsulates the concept of a vector in 3D space from
geometry
"""
LENGTH = 3
def __init__(self, *values):
self.data = np.array(values, dtype=np.float).flatten()
# check the length
if self.data.size != Vector.LENGTH:
msg = "Expected %d values, found %d" % (Vector.LENGTH, self.data.size)
raise RuntimeError(msg)
# sanity check the numbers
if np.any(np.isnan(self.data)):
raise RuntimeError("Encountered NaN")
x = property(lambda self: self.data[0])
y = property(lambda self: self.data[1])
z = property(lambda self: self.data[2])
length = property(lambda self: np.sqrt(self.dot(self)))
def cross(self, other):
"""
Calculate the cross product of this with another vector.
"""
return Vector(np.cross(self.data, Vector(other).data))
def dot(self, other):
"""
Calculate the dot product of this with another vector.
"""
return np.dot(self.data, Vector(other).data)
def normalize(self):
"""
Set the unit length to one
"""
if self.isCardinal(True):
return self
length = self.length # cache value
if abs(length) < TOLERANCE:
raise RuntimeError("Zero vector of zero length")
# divide the elements by the length
self.data /= length
# set near zeros to zero
self.data[np.abs(self.data) < TOLERANCE] = 0.
return self
def isCardinal(self, resetValues=False):
"""
Returns true iff the vector is (1,0,0), (0,1,0) or (0,0,1).
"""
if abs(self.length-1.) > TOLERANCE:
return False
for unit_vec in (UNIT_X, UNIT_Y, UNIT_Z):
if np.allclose(self.data, unit_vec, atol=TOLERANCE):
if resetValues:
self.data = unit_vec
return True
return False
def __getitem__(self, key):
return self.data[key]
def __eq__(self, other):
try:
return np.alltrue(self.data == other.data)
except AttributeError:
other = Vector(other)
return self == other
def __add__(self, other):
return Vector(self.data + other.data)
def __sub__(self, other):
return Vector(self.data - other.data)
def __div__(self, other):
return Vector(self.data / other) # only allow divide by a scalar
def __truediv__(self, other):
return Vector(self.data / other) # only allow divide by a scalar
def __mul__(self, other):
return Vector(self.data * other) # only allow multiply by a scalar
def __rmul__(self, other):
return self * other
def __repr__(self):
return self.data.__repr__()
def __len__(self):
return self.data.size
length = property(lambda self: math.sqrt(self.dot(self)))
UNIT_X = Vector(1.,0.,0.)
UNIT_Y = Vector(0.,1.,0.)
UNIT_Z = Vector(0.,0.,1.)
def getAngle(y, x, debug=False, onlyPositive=True):
"""
Returns the angle in radians using atan2 (y=sin, x=cos)
"""
if debug:
print("getAngle(%f, %f)=" % (y, x),)
angle = math.atan2(y, x)
if onlyPositive and angle < 0.:
angle += 2.*math.pi
if debug:
print(math.degrees(angle))
return angle
def getEuler(uVec, vVec, **kwargs):
"""This is taken from the Goiniometer.getEulerAngles() function that is
in the package gov.ornl.sns.translation.geometry.calc.jython"""
degrees = kwargs.get("degrees", False)
verbose = kwargs.get("verbose", 0)
# normalize the u-vector
uVec = uVec.normalize()
# determine the perpendicular
nVec = uVec.cross(vVec)
nVec = nVec.normalize()
# make sure that u,v are perpendicular
vVec = nVec.cross(uVec)
vVec = vVec.normalize()
# make sure the new unit vectors are orthogonal
if abs(uVec.dot(vVec)) > TOLERANCE:
raise RuntimeError('u dot v is too large: {} > {}'.format(abs(uVec.dot(vVec)), TOLERANCE))
if abs(uVec.dot(nVec)) > TOLERANCE:
raise RuntimeError('u dot n is too large: {} > {}'.format(abs(uVec.dot(nVec)), TOLERANCE))
if abs(vVec.dot(nVec)) > TOLERANCE:
raise RuntimeError('v dot n is too large: {} > {}'.format(abs(vVec.dot(nVec)), TOLERANCE))
if verbose:
print("orthonormal:", uVec, vVec, nVec)
# calculate the angles
import math
if vVec.y == 1.: # chi rotation is 0, just rotate about z-axis
if verbose > 1:
print("chi rotation is 0")
phi = math.atan2(nVec.x, nVec.z)
chi = 0.
omega = 0.
elif vVec.y == -1.:# chi rotation is 180 degrees
if verbose > 1:
print("chi rotation is 180 degrees")
phi = -1. * math.atan2(nVec.x, nVec.z)
if phi == -1.* math.pi:
phi = math.pi
chi = math.pi
omega = 0.
else:
if verbose > 1:
print("using generic version")
phi = math.atan2(nVec.y, uVec.y)
chi = math.acos(vVec.y)
omega = math.atan2(vVec.z, -1. * vVec.x)
# put together the result
result = [phi, chi, omega]
if degrees:
result = [math.degrees(val) for val in result]
for (i, val) in enumerate(result):
if abs(val) == 0.:
result[i] = 0.
return tuple(result)
def __genRotationDict(rotation):
"""
Generate the dict used for creating attributes.
"""
(angle, axis) = rotation
axis = [str(int(val)) for val in axis]
result = {}
result["val"] = str(angle)
if axis[0] != '0' or axis[1] != '0' or axis[2] != '1':
result["axis-x"] = axis[0]
result["axis-y"] = axis[1]
result["axis-z"] = axis[2]
return result
ATOL_ORIENTATION = 1.e-15
def checkRotation(rotation):
'''Determine if the supplied matrix adheres to the rules of a rotation matrix'''
# determinant mush be +/- 1
determinant = np.abs(np.linalg.det(rotation))
if np.abs(determinant) - 1. > 1.e-15:
raise RuntimeError('Determinant must be +-1. Found %f' % determinant)
# rotation matrix is orthogonal (inverse == transpose)
inverse = np.linalg.inv(rotation)
transpose = np.transpose(rotation)
if not np.allclose(inverse, transpose, atol=ATOL_ORIENTATION):
raise RuntimeError(str(inverse) + ' != ' + str(transpose))
def generateRotation(axis, angle, radians=True):
if not radians:
angle = np.radian(angle)
sqr_a = axis.x*axis.x
sqr_b = axis.y*axis.y
sqr_c = axis.z*axis.z
len2 = sqr_a+sqr_b+sqr_c
k2 = math.cos(angle)
k1 = (1.0-k2)/len2
k3 = math.sin(angle)/math.sqrt(len2)
k1ab = k1*axis.x*axis.y
k1ac = k1*axis.x*axis.z
k1bc = k1*axis.y*axis.z
k3a = k3*axis.x
k3b = k3*axis.y
k3c = k3*axis.z
rotation = np.matrix([[k1*sqr_a+k2, k1ab-k3c, k1ac+k3b],
[k1ab+k3c, k1*sqr_b+k2, k1bc-k3a],
[k1ac-k3b, k1bc+k3a, k1*sqr_c+k2]],
dtype=np.float)
rotation[np.abs(rotation) < 1.e-15] = 0.
checkRotation(rotation)
return rotation
def calcEuler(rotation, convention):
R=rotation
angles = np.zeros(3, dtype=np.float)
XYZ=np.array([[1,0,0],[0,1,0],[0,0,1]], dtype=np.float) # identity matrix
#decode the convention: code X=0, Y=1, Z=2
convention=convention.upper().translate(maketrans("XYZ","012"))
first,second,last=int(convention[0]),int(convention[1]),int(convention[2])
tb = 1 if (first+second+last==3) else 0
par12 = 1 if ((last-second)%3 ==1) else -1
par01 = 1 if ((second-first)%3 ==1) else -1
s3=(1-tb-tb*par12)*R[(last+tb*par12)%3,(last-par12)%3]
c3=(tb-(1-tb)*par12)*R[(last+tb*par12)%3,(last+par12)%3]
angles[2]=getAngle(s3,c3)
R1R2=np.dot(R, generateRotation(Vector(XYZ[last]),-1.*angles[2]))
s1=par01*R1R2[(first-par01)%3,(first+par01)%3]
c1=R1R2[second,second]
s2=par01*R1R2[first,3-first-second]
c2=R1R2[first,first]
angles[1]=getAngle(s2,c2)
angles[0]=getAngle(s1,c1)
#note equivalent solution o1-180,-o2,o3-180 for ABA
#note equivalent solution o1-180,180-o2,o3-180 for ABC
angles[abs(angles) < 1.e-5] = 0.
return angles
#https://en.wikipedia.org/wiki/Euler_angles
def getYZY(rotation):
angles = calcEuler(rotation, 'YZY')
# if the z-rotation is missing, just set
# everything to the first y-rotation
if angles[1] == 0.:
angles = np.array([0., 0., angles[0]+angles[2]])
# make sure that everything has angle <= 2pi
angles = angles % (2. * np.pi)
angles[np.abs(angles) < 1.e-15] = 0.
return angles
def getZYZ(rotation):
angles = calcEuler(rotation, 'ZYZ')
# if the y-rotation is missing, just set
# everything to the first z-rotation
if angles[1] == 0.:
angles = np.array([0., 0., angles[0]+angles[2]])
# make sure that everything has angle <= 2pi
angles = angles % (2. * np.pi)
angles[np.abs(angles) < 1.e-15] = 0.
return angles
def makeLocation(instr, det, name, center, rotations, tol_ang=TOLERANCE):
"""
Make a location appropriate for an instrument component.
"""
# set angles to zero if they aren' already
for i, rot in enumerate(rotations):
if abs(rot[0]) < 1.e-15:
rotations[i] = [0., rot[1]]
# location includes first rotation
sub = instr.addLocation(det,
x=center[0], y=center[1], z=center[2],
name=name, rot_y=rotations[0][0])
if abs(rotations[1][0]) > tol_ang: # second rotation
sub = le.SubElement(sub, "rot",
__genRotationDict(rotations[1]))
if abs(rotations[2][0]) > tol_ang: # third rotation angle
le.SubElement(sub, "rot", __genRotationDict(rotations[2]))
class Rectangle:
NPOINTS = 4
BOTTOMLEFT = 1
TOPLEFT = 2
TOPRIGHT = 3
BOTTOMRIGHT = 4
def __init__(self, p1, p2, p3, p4, tolerance_len=TOLERANCE, tolerance_ang=TOLERANCE):
"""
The points should be specified as lower-left (p1) in a clockwise order.
"""
p1 = Vector(p1)
p2 = Vector(p2)
p3 = Vector(p3)
p4 = Vector(p4)
self._tol_len = tolerance_len
self._tol_ang = tolerance_ang
# Are they 4 edges of a 2D plane arrange so consecutive
# points with wrap are edges
d1 = self.__magnitudeSq(p1, p2)
d2 = self.__magnitudeSq(p1, p3)
d3 = self.__magnitudeSq(p1, p4)
if d1 > d2 or d3 > d2:
if d1 > d2:
specific = " (d1=|p1-p2|=%f > d2=|p1-p3|=%f)" % (d1, d2)
if d3 > d2:
specific = " (d3=|p1-p4|=%f > d2=|p1-p3|=%f)" % (d3, d2)
raise RuntimeError("The Points are in the incorrect order"+specific)
# Parallelogram opposite side from p1 to p4 is parallel and
# equal lengths.
left = p2-p1
right = p4-p3
if abs(left.length - right.length) > self._tol_len:
msg = "Left and right sides are not equal length: " \
+ "left=%f != right=%f (diff=%f)" \
% (left.length, right.length, abs(left.length-right.length))
raise RuntimeError(msg)
top = p2-p3
bottom = p4-p1
if abs(top.length - bottom.length) > self._tol_len:
msg = "Top and bottom sides are not equal length: "\
+ "top=%f != bottom=%f (diff=%f)" \
% (top.length, bottom.length, abs(top.length-bottom.length))
raise RuntimeError(msg)
# opposite sides should add up to zero length vector
for (i,num) in zip(('x', 'y', 'z'), left+right):
if abs(num) > self._tol_len:
msg = "Points not rectangle corners (num[%s]=%f > %f)" \
% (i,num, self._tol_len)
raise RuntimeError(msg)
# Make sure the points are at right angles. Eliminates collinear
# case too
dotProd = left.dot(bottom)
if abs(dotProd) > self._tol_len:
msg = " This is not a rectangle (p2-p1)dot(p4-p1) = %f > %f" \
% (dotProd, self._tol_len)
raise RuntimeError(msg)
self.__center = (p1 + p2 + p3 + p4) / float(Rectangle.NPOINTS)
self.__calcOrientation(p1, p2, p3, p4)
self.__points = (p1, p2, p3, p4)
def __magnitudeSq(self, first, second):
"""
Finds the square of the magnitude of the difference of two arrays
with three elements.
@param first The first array
@param second The second array
@return The magnitude squared of (first-second)
"""
temp = first - second
return temp.dot(temp)
def __calcOrientation(self, p1, p2, p3, p4):
"""
Calculates the orientation matrix for these points.
@return The 9 element orientation matrix for these points.
"""
# calculate the direction vectors
xvec = .5*(p4 + p3) - self.__center
yvec = -.5*(p1 + p4) + self.__center
# normalize the vectors
zvec = xvec.cross(yvec)
xvec.normalize()
yvec.normalize()
zvec.normalize()
#print("x =", xvec, "y =", yvec, "z =", zvec)
#print("x dot y =", xvec.dot(yvec))
#print("x dot z =", xvec.dot(zvec))
#print("y dot z =", yvec.dot(zvec))
# xvec should change most in x direction
self.__orient = np.array([xvec.data,yvec.data,zvec.data],
dtype=np.float)
def __euler_rotations_zyz(self):
angles = np.degrees(getZYZ(self.__orient))
# output for each: rotation angle (in degrees), axis of rotation
alpha_rot = [angles[0], (0., 0., 1.)]
beta_rot = [angles[1], (0., 1., 0.)]
gamma_rot = [angles[2], (0., 0., 1.)]
return (alpha_rot, beta_rot, gamma_rot)
def __euler_rotations_yzy(self):
angles = np.degrees(getYZY(self.__orient))
alpha_rot = [-1.*angles[0], (0., 1., 0.)]
beta_rot = [-1.*angles[1], (0., 0., 1.)]
gamma_rot = [-1.*angles[2], (0., 1., 0.)]
return (alpha_rot, beta_rot, gamma_rot)
def __width(self):
width = self.__points[3] - self.__points[0]
return width.length
def __height(self):
height = self.__points[1] - self.__points[0]
return height.length
width = property(__width, doc="Width of the rectangle")
height = property(__height, doc="Height of the rectangle")
center = property(lambda self: Vector(self.__center[:]),
doc="Center of the rectangle")
orientation = property(lambda self: self.__orient[:],
doc="Orientation as a set of three basis vectors")
euler_rot = property(__euler_rotations_zyz)
euler_rot_yzy = property(__euler_rotations_yzy)
points = property(lambda self: self.__points[:],
doc="The four corners originally supplied in the constructor")
def makeLocation(self, instr, det, name, technique="orientation"):
"""
@param instr The root instrument that does most of the work.
@param det The detector component.
@param name The name of the bank.
"""
if not HAS_LXML:
raise RuntimeError("lxml is not loaded")
# cache within the function
technique = technique.upper()
if technique == "ORIENTATION":
rotations = list(self.__euler_rotations_yzy())
elif technique == "UV":
# 'simple' euler rotation calculation
u = self.__points[3]-self.__points[0] # lower right - lower left
v = self.__points[1]-self.__points[0] # upper left - lower left
rotations = list(getEuler(u, v, degrees=True))
rotations[0] = [rotations[0], (0., 1., 0.)]
rotations[1] = [rotations[1], (0., 0., 1.)]
rotations[2] = [rotations[2], (0., 1., 0.)]
else:
raise RuntimeError("Do not understand technique '%s'" % technique)
rotations.reverse() # may need this
makeLocation(instr, det, name, self.__center, rotations, self._tol_ang)