-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLogic_K.py
314 lines (285 loc) · 11.2 KB
/
Logic_K.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
__author__ = 'marcincuber'
# -*- coding: utf-8 -*-
"""
:Modal Logic K- no restrictions on the frame
"""
import syntax
import sols
import graph as gr
import networkx as nx
import copy
import time
from collections import OrderedDict
#import symbols
SET = syntax.Language(*syntax.ascii_setup)
'''
:Arrays to store the number of worlds and sets that correspond to each world
'''
Graphs = [] #initilise empty list of graphs
Sets = [] #initilise list to store formulas which will be available in each world
graph_formulas = [] #list of dictionaries-used formulas in node for graph
formulas = {} #single dictionary
formulas[1] = [] #first list for node 1
graph_formulas.append(formulas)#add it to list of dictionaries
'''
:Input String:
'''
str_psi = "(Bp ^ Dq)"
print "formula input: ", (str_psi)
'''
:Parsed string into tuple and list
'''
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
'''
:creating initial graph
'''
G = nx.MultiDiGraph()
uniq_Sets = [list(OrderedDict.fromkeys(l)) for l in Sets]
gr.create_graph_K(G,uniq_Sets)
Graphs.append(G)
'''
:functions to remove duplicates from the list
'''
def remove_duplicates(lista):
return list(set(lista))
def remove_dups_graph(graph):
for node in graph.nodes():
value_list = graph.node[node]
unique_list = remove_duplicates(value_list)
graph.node[node] = unique_list
'''
:resolving ALPHAS given a GRAPH
'''
def alpha_node(graph):
for node in graph.nodes():
set = []
value_list = graph.node[node]
for i in range(0,len(value_list)):
if isinstance(value_list[i], tuple):
alpha = sols.recursivealpha(value_list[i])
for j in alpha:
if isinstance(j, tuple):
if j not in set:
set.append(j)
else:
for prop in alpha:
set.append(prop)
elif isinstance(value_list[i], str):
set.append(value_list[i])
graph.node[node] = remove_duplicates(set)
'''
:resolving ALPHAS given a NODE in graph
'''
def alpha_node_solve(graph,node):
set = [] # array to store expanded alphas
value_list = graph.node[node]
for i in range(0,len(value_list)):
if isinstance(value_list[i], tuple):
#solve recursively alpha formulas
alpha = sols.recursivealpha(value_list[i])
for j in alpha:
if isinstance(j, tuple):
if j not in set:
set.append(j)
else:
for prop in alpha:
if prop not in set:
set.append(prop)
elif isinstance(value_list[i], str):
if value_list[i] not in set:
set.append(value_list[i])
graph.node[node] = set
'''
:resolving BETAS given a NODE in graph
'''
def beta_node_solve(graph, node, formulas_in):
value_list = graph.node[node]
for i in range(0,len(value_list)):
value = value_list[i]
if value not in formulas_in[node]:
if value[0] =='or':
part1 = value[1]
part2 = value[2]
comp2 = graph.copy()
graph.node[node].remove(value)
comp2.node[node].remove(value)
graph.node[node].append(part1)
comp2.node[node].append(part2)
Graphs.append(comp2)
formulas_in[node].append(value)
copy_formulas_in = copy.deepcopy(formulas_in)
graph_formulas.append(copy_formulas_in)
for graph in Graphs:
alpha_node(graph)
elif value_list[i] == 'or':
part1 = value_list[i+1]
part2 = value_list[i+2]
comp2 = graph.copy()
graph.node[node] = []
comp2.node[node] = []
graph.node[node].append(part1)
comp2.node[node].append(part2)
Graphs.append(comp2)
formulas_in[node].append(value)
copy_formulas_in = copy.deepcopy(formulas_in)
graph_formulas.append(copy_formulas_in)
for graph in Graphs:
alpha_node(graph)
elif value[0] == 'not' and value[1][0] == 'and':
part1 = value[1][1]
part2 = value[1][2]
left_part = ('not',part1)
right_part = ('not',part2)
comp2 = graph.copy()
graph.node[node].remove(value)
comp2.node[node].remove(value)
graph.node[node].append(left_part)
comp2.node[node].append(right_part)
Graphs.append(comp2)
formulas_in[node].append(value)
copy_formulas_in = copy.deepcopy(formulas_in)
graph_formulas.append(copy_formulas_in)
for graph in Graphs:
alpha_node(graph)
elif value[0] == 'imply':
part1 = value[1]
part2 = value[2]
left_part = ('not',part1)
comp2 = graph.copy()
graph.node[node].remove(value)
comp2.node[node].remove(value)
graph.node[node].append(left_part)
comp2.node[node].append(part2)
Graphs.append(comp2)
formulas_in[node].append(value)
copy_formulas_in = copy.deepcopy(formulas_in)
graph_formulas.append(copy_formulas_in)
for graph in Graphs:
alpha_node(graph)
elif value_list[i] == 'imply':
part1 = value_list[i+1]
part2 = value_list[i+2]
left_part = ('not',part1)
comp2 = graph.copy()
graph.node[node] = []
comp2.node[node] = []
graph.node[node].append(left_part)
comp2.node[node].append(part2)
Graphs.append(comp2)
formulas_in.append(value)
copy_formulas_in = copy.deepcopy(formulas_in)
graph_formulas.append(copy_formulas_in)
for graph in Graphs:
alpha_node(graph)
'''
:resolving DELTAS given a NODE in graph
'''
def delta_node_solve(graph, node, formulas_in):
delta_list = graph.node[node]
for i in range(len(delta_list)-1,-1,-1):
part1 = delta_list[i][0]
if part1 == 'diamond':
sub = delta_list[i]
if sub not in formulas_in[node]:
formulas_in[node].append(sub)
part2 = delta_list[i][1]
new_node= graph.number_of_nodes()+1
graph.add_edge(node,(new_node)) #adding new world and relation Rxx'
graph.node[node] = delta_list
graph.node[new_node] = [part2]
formulas_in[new_node] = []
alpha_node_solve(graph, node)
beta_node_solve(graph, node, formulas_in)
previous = graph.predecessors(new_node)
for num in previous:
set = graph.node[num];
for j in range(0,len(set)):
if set[j][0] == 'not' and set[j][1][0] == 'diamond':
formula = ('not',set[j][1][1])
if formula not in graph.node[new_node]:
graph.node[new_node].append(formula)
alpha_node_solve(graph, new_node)
beta_node_solve(graph, new_node, formulas_in)
elif set[j][0] == 'box':
if set[j][1] not in graph.node[new_node]:
graph.node[new_node].append(set[j][1])
alpha_node_solve(graph, new_node)
beta_node_solve(graph, new_node, formulas_in)
elif part1 == 'not' and delta_list[i][1][0] == 'box':
sub = delta_list[i]
if sub not in formulas_in[node]:
formulas_in[node].append(sub)
part2 = ('not', delta_list[i][1][1])
new_node= graph.number_of_nodes()+1
graph.add_edge(node,(new_node)) #adding new world and relation Rxx'
graph.node[node] = delta_list
graph.node[new_node] = [part2]
formulas_in[new_node] = []
alpha_node_solve(graph, node)
beta_node_solve(graph, node, formulas_in)
previous = graph.predecessors(new_node)
for num in previous:
set = graph.node[num];
for j in range(0,len(set)):
if set[j][0] == 'not' and set[j][1][0] == 'diamond':
formula = ('not',set[j][1][1])
if formula not in graph.node[new_node]:
graph.node[new_node].append(formula)
alpha_node_solve(graph, new_node)
beta_node_solve(graph, new_node, formulas_in)
elif set[j][0] == 'box':
if set[j][1] not in graph.node[new_node]:
graph.node[new_node].append(set[j][1])
alpha_node_solve(graph, new_node)
beta_node_solve(graph, new_node, formulas_in)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
""" Main loop iterating over graphs """
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
def main():
num_graph = 0
for graph in Graphs:
formulas_in = graph_formulas[num_graph]
status = 1;
index = 1;
alpha_node(graph)
while status == 1:
for node in range(index,len(graph.nodes())+1):
start_length = len(graph.nodes())
alpha_node_solve(graph,node)
beta_node_solve(graph, node,formulas_in)
delta_node_solve(graph, node,formulas_in)
end_length = len(graph.nodes())
if start_length < end_length:
diff = end_length - start_length
index = index+1
elif index < len(graph.nodes()):
index = index+1
else:
status = 0;
num_graph += 1
'''
:finding inconsistencies in the model
'''
index_inconsistent =[]
for i in range(0,len(Graphs)):
graph = Graphs[i]
for node in graph.nodes():
consistent_list = graph.node[node]
status = sols.inconsistent(consistent_list)
if status == True:
index_inconsistent.append(i)
else:
status == False
index_inconsistent = list(set(index_inconsistent))
# removing inconsistent graphs- models
if index_inconsistent is not []:
for num in reversed(index_inconsistent):
del Graphs[num];
'''
:display and save all generated graphs
'''
gr.final_graphs(Graphs,psi)
t0 = time.clock()
main()
print ((time.clock() - t0), " seconds process time")