-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattentionControl.py
142 lines (115 loc) · 5.56 KB
/
attentionControl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from typing import Union, Tuple, Dict
import torch
import abc
import utils
from utils import get_replacement_mapper
class AttentionControl(abc.ABC):
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
if attn.requires_grad:
"""For embeddings optimization."""
self.forward(attn[h // 2:], is_cross, place_in_unet)
else:
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in
self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
class AttentionControlEdit(AttentionStore, abc.ABC):
def __init__(self, prompts, num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
tokenizer, device="cpu"):
super(AttentionControlEdit, self).__init__()
self.batch_size = len(prompts)
self.cross_replace_alpha = utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps,
tokenizer).to(device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
"Replace cross-attention maps. See details in Prompt-to-Prompt (https://arxiv.org/abs/2208.01626)."
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (
1 - alpha_words) * attn_repalce
attn[1:] = attn_repalce_new
else:
"Fix self-attention maps. See details in Section 3.2 of our paper-v2."
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def step_callback(self, x_t):
return x_t
def replace_self_attention(self, attn_base, att_replace):
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
class AttentionReplace(AttentionControlEdit):
def __init__(self, prompts, tokenizer, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
device='cpu'):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps,
tokenizer, device=device)
# self.mapper = get_replacement_mapper(prompts, tokenizer).to(device)
def replace_cross_attention(self, attn_base, att_replace):
# return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
return attn_base.unsqueeze(0)