-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore.py
252 lines (207 loc) · 8.9 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import math
import torch
import torch.optim as optim
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.cluster import adjusted_rand_score
import params
from utils import make_variable
def train_src(encoder, classifier, data_loader):
"""Train classifier for source domain."""
####################
# 1. setup network #
####################
# set train state for Dropout and BN layers
encoder.train()
classifier.train()
loss_e = []
loss_min = float('inf')
# setup criterion and optimizer
optimizer = optim.Adam(list(encoder.parameters()) + list(classifier.parameters()),
lr=s_lr)
criterion = nn.CrossEntropyLoss()
####################
# 2. train network #
####################
for epoch in range(num_epochs_pre):
loss_i = torch.zeros(len(XS_train_dataloader))
for step, (samples, labels) in enumerate(data_loader):
# Transfer to GPU
samples, labels = samples.to(device), labels.to(device)
# zero gradients for optimizer
optimizer.zero_grad()
# compute loss for encoder
loss = criterion(classifier(encoder(samples)), labels)
loss_i[step] = loss
# optimize source classifier
loss.backward()
optimizer.step()
if loss_i.mean() < loss_min:
loss_min = loss_i.mean()
encoder_loss_min = encoder
classifier_loss_min = classifier
loss_e.append(loss_i.mean().item())
# print epoch info
if ((epoch + 1) % log_step == 0):
print("Epoch [{}/{}]: loss={:.4f}"
.format(epoch + 1,
num_epochs_pre,
loss_i.mean().item()))
fig = plt.figure() # figsize=(6, 6)
ax = fig.add_subplot(111)
# plot the average loss over 100 epochs
# plt.plot(torch.tensor(lossi).view(-1, 10).mean(1))
plt.plot(loss_e)
plt.title('Training source loss')
plt.savefig('loss.png', bbox_inches='tight', dpi=600)
return encoder_loss_min, classifier_loss_min
def eval_src(encoder, classifier, data_loader, fig_title=None):
"""Evaluate classifier for source domain."""
# set eval state for Dropout and BN layers
encoder.eval()
classifier.eval()
# init loss and accuracy
loss = 0
acc = 0
# set loss function
criterion = nn.CrossEntropyLoss()
feat = np.array([]).reshape(0,2)
label_pred = np.array([], dtype=int)
label_true = np.array([], dtype=int)
# evaluate network
for (samples, labels) in data_loader:
# make smaples and labels variable
samples = make_variable(samples)
labels = make_variable(labels)
preds = classifier(encoder(samples))
loss += criterion(preds, labels).item()
pred_cls = preds.data.max(1)[1]
acc += pred_cls.eq(labels.data).cpu().sum()
feat = np.vstack((feat,samples.detach().numpy()))
label_pred = np.hstack((label_pred,preds.data.max(1)[1].detach().numpy()))
label_true = np.hstack((label_true,labels.numpy()))
loss /= len(data_loader)
acc = acc.item()/len(data_loader.dataset)
ari = adjusted_rand_score(label_true.flatten(), label_pred.flatten())
print("Avg Loss = {}, Avg Accuracy = {:2%}, ARI = {:.5f}".format(loss, acc, ari))
if fig_title is not None:
h = .01 # step size in the mesh
x_min, x_max = feat[:, 0].min() - 5, feat[:, 0].max() + 5
y_min, y_max = feat[:, 1].min() - 5, feat[:, 1].max() + 5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
xxyy = np.concatenate((xx.ravel().reshape(-1,1), yy.ravel().reshape(-1,1)),axis=1)
xxyy = torch.from_numpy(xxyy).to(torch.float32)
Z = classifier(encoder(xxyy))
Z = Z.max(1)[1].detach().numpy()
Z = Z.reshape(xx.shape)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
fig.suptitle(fig_title)
ax1.scatter(feat[:, 0], feat[:, 1], c=label_true, s=40, cmap=plt.cm.coolwarm)
ax1.set_xlim(xx.min(), xx.max())
ax1.set_ylim(yy.min(), yy.max())
ax2.contourf(xx, yy, Z, alpha=0.5, cmap=plt.cm.coolwarm)
ax2.scatter(feat[:, 0], feat[:, 1], c=label_pred, s=40, cmap=plt.cm.coolwarm)
ax2.set_xlim(xx.min(), xx.max())
ax2.set_ylim(yy.min(), yy.max())
ax1.set_title('true labels')
ax2.set_title('predicted labels')
ax1.tick_params(axis='both', which='both', bottom=False, top=False, left=False, right=False,
labelbottom=False, labeltop=False, labelleft=False, labelright=False)
ax2.tick_params(axis='both', which='both', bottom=False, top=False, left=False, right=False,
labelbottom=False, labeltop=False, labelleft=False, labelright=False)
plt.savefig(fig_title+'.png', bbox_inches='tight', dpi=600)
def train_tgt(src_encoder, tgt_encoder, discriminator, classifier, src_data_loader, tgt_data_loader):
"""
Adversarial adaptation to train target encoder.
Train encoder for target domain.
"""
####################
# 1. setup network #
####################
# set train state for Dropout and BN layers
discriminator.train()
tgt_encoder.train()
d_loss_e = []
g_loss_e = []
g_loss_min = float('inf')
# setup criterion and optimizer
criterion = nn.CrossEntropyLoss()
optimizer_discriminator = optim.Adam(discriminator.parameters(), lr=d_lr)
optimizer_tgt = optim.Adam(tgt_encoder.parameters(), lr=g_lr)
####################
# 2. train network #
####################
for epoch in range(num_epochs):
d_loss_i = torch.zeros(len(XT_train_dataloader))
g_loss_i = torch.zeros(len(XT_train_dataloader))
# zip source and target data pair
for step, ((samples_src, _), (samples_tgt, _)) in enumerate(zip(src_data_loader, tgt_data_loader)):
# Transfer to GPU
samples_src, samples_tgt = samples_src.to(device), samples_tgt.to(device)
# extract and concat features
feat_src = src_encoder(samples_src)
feat_tgt = tgt_encoder(samples_tgt)
# detach feat_tgt from the tgt_encoder to avoid this error:
# RuntimeError: Trying to backward through the graph a second time
feat_concat = torch.cat((feat_src, feat_tgt.detach()), 0)
# prepare real and fake label
label_src = torch.ones(feat_src.size(0), requires_grad=False).long().to(device)
label_tgt = torch.zeros(feat_tgt.size(0), requires_grad=False).long().to(device)
adversary_label = torch.cat((label_src, label_tgt), 0)
###########################
# 2.1 train discriminator #
###########################
# clear out the gradients from the last step loss.
optimizer_discriminator.zero_grad()
# compute loss for discriminator
discriminator_loss = criterion(discriminator(feat_concat), adversary_label)
d_loss_i[step] = discriminator_loss
#backward propagation: calculate gradients
discriminator_loss.backward()
#update the weights
optimizer_discriminator.step()
############################
# 2.2 train target encoder #
############################
# clear out the gradients from the last step loss
optimizer_tgt.zero_grad()
# compute loss for target encoder
generator_loss = criterion(discriminator(feat_tgt), 1 - label_tgt)
# generator_loss = criterion(discriminator(feat_concat.detach()), 1 - adversary_label)
g_loss_i[step] = generator_loss
# backward propagation: calculate gradients
generator_loss.backward()
# update the weights
optimizer_tgt.step()
d_loss_e.append(d_loss_i.mean().item())
if g_loss_i.mean() < g_loss_min:
g_loss_min = g_loss_i.mean()
tgt_encoder_loss_min = tgt_encoder
g_loss_e.append(g_loss_i.mean().item())
#######################
# 2.3 print epoch info #
#######################
if ((epoch + 1) % log_step == 0):
print("Epoch [{}/{}]: d_loss={:.4f} g_loss={:.4f}"
.format(epoch + 1,
num_epochs,
d_loss_i.mean().item(),
g_loss_i.mean().item()))
fig = plt.figure() # figsize=(6, 6)
ax = fig.add_subplot(111)
# plot the average loss
# plt.plot(torch.tensor(discriminator_lossi).view(-1, log_step).mean(1))
plt.plot(d_loss_e)
plt.title('Discriminator loss')
plt.savefig('discriminator_loss.png', bbox_inches='tight', dpi=600)
fig = plt.figure() # figsize=(6, 6)
ax = fig.add_subplot(111)
# plot the average loss
# plt.plot(torch.tensor(generator_lossi).view(-1, log_step).mean(1))
plt.plot(g_loss_e)
plt.title('Generator loss')
plt.savefig('generator_loss.png', bbox_inches='tight', dpi=600)
return tgt_encoder_loss_min