-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcos_plot.py
56 lines (42 loc) · 1.29 KB
/
cos_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import os
import codecs
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.manifold import MDS
path = os.getcwd() + '/data/'
data_list = os.listdir(path)
data_list = sorted(data_list)
if '.DS_Store' in data_list:
data_list.remove('.DS_Store')
else:
pass
documents = []
for i in range(len(data_list)):
fullpath = path + data_list[i]
documents.append(fullpath)
vectorizer = CountVectorizer(input='filename')
dtm = vectorizer.fit_transform(documents)
vocab = vectorizer.get_feature_names()
dtm = dtm.toarray()
dist = euclidean_distances(dtm)
cosdist = 1 - cosine_similarity(dtm)
mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
pos = mds.fit_transform(cosdist)
xs, ys = pos[:, 0], pos[:, 1]
fig = plt.figure(figsize=(10,6))
ax = fig.add_subplot(111)
ax.set_xlim([min(xs)-.05, max(xs)+.05])
ax.set_ylim([min(ys)-.05, max(ys)+.05])
for x, y, name in zip(xs, ys, data_list):
name = name.replace('.txt', '')
plt.scatter(x, y)
plt.text(x, y, name, fontsize=7)
plt.show()
fig.savefig('2d')