-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsimilarity_v1.py
111 lines (97 loc) · 3.55 KB
/
similarity_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# import pandas as pd
# import numpy as np
from nltk.corpus import stopwords
from nltk.corpus import wordnet as wn
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# import nltk
import re
from sentence_transformers import SentenceTransformer
from scipy.spatial import distance
from nltk.corpus import stopwords
import re
import language_tool_python
from itertools import chain
import os
# nltk.download('punkt')
# nltk.download('stopwords')
# nltk.download('wordnet')
def jaccard_similarity(list1, list2):
s1 = set(list1)
s2 = set(list2)
return float(len(s1.intersection(s2)) / len(s1.union(s2)))
def grammar_error(list1):
tool = language_tool_python.LanguageTool('en-US')
matches = tool.check(list1)
grammar_score = max(0,1 - len(matches)/len(list1))
os.system("ps aux | grep 'languagetool-server.jar' | awk '{print $2}' | xargs kill -9")
return float(grammar_score)
def bigram_similarity(ref,ans):
bigram_ref = [b for b in zip(ref.split(" ")[:-1], ref.split(" ")[1:])]
bigram_ans = [b for b in zip(ans.split(" ")[:-1], ans.split(" ")[1:])]
bigram_ref = set(bigram_ref)
bigram_ans = set(bigram_ans)
count=0
for i in bigram_ref:
if i in bigram_ans:
count=count+1
avg_length = (len(bigram_ans) + len(bigram_ref))/2
return float(count/avg_length)
def synonym_similarity(ref_filtered , ans_filtered , ans_synonym):
count = 0
ref_set = set(ref_filtered)
ans_set = ans_filtered
for i in ans_set:
if i in ref_set:
count=count+1
else:
temp_set = ans_synonym[i]
if i in temp_set:
count=count+1
break
avg_length = float((len(ref_filtered) + len(ans_filtered))/2)
return count/avg_length
def assess_answer(ref,ans,marks):
# initialize
sbert_model = SentenceTransformer('bert-base-nli-mean-tokens')
stop_words = set(stopwords.words('english'))
# pre-process
ref = re.sub(r'[^A-Za-z0-9]+', ' ', ref)
ans= re.sub(r'[^A-Za-z0-9]+', ' ', ans)
a= word_tokenize(ans)
b = word_tokenize(ref)
ref_filtered = [w for w in b if not w in stop_words]
ans_filtered = [w for w in a if not w in stop_words]
ans_filtered1 = list(set(ans_filtered))
ans_synonym = {}
for i in ans_filtered1:
synonyms = wn.synsets(i)
lemmas = set(chain.from_iterable([word.lemma_names() for word in synonyms]))
ans_synonym.update({i:lemmas})
ref1 = sbert_model.encode(ref)
ans1 = sbert_model.encode(ans)
# Compute Metrics
# cosine similarity
cosine_value = 1- distance.cosine(ref1,ans1)
# jaccard similarity
jaccard_value = jaccard_similarity(a,b)
# grammar check
grammar_score = grammar_error(ans)
# bigrams for structural similarity
bigram_value = bigram_similarity(ref,ans)
# synonym similarity
synonym_value = synonym_similarity(ref_filtered,ans_filtered,ans_synonym)
final_marks=0
if(marks==5):
final_marks = 1.8*synonym_value + 1.2*bigram_value + 0.5*grammar_score + 0.4*cosine_value + 1.1*jaccard_value
if(marks==10):
final_marks = 4.2*synonym_value + 3.8*bigram_value + 0.5*grammar_score + 0.7*cosine_value + 0.8*jaccard_value
if(marks==15):
final_marks = 7.3*synonym_value + 4.7*bigram_value + 0.6*grammar_score + 1.0*cosine_value + 1.4*jaccard_value
print(final_marks)
return final_marks
# if __name__ == "__main__":
# ref = "Jesus is always around us"
# ans = "Jesus is my god"
# marks = 5
# assess_answer(ref,ans,marks)