-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_distill_mutual.py
408 lines (368 loc) · 13.8 KB
/
main_distill_mutual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import torch
import os
import argparse
from distill_mutual.network import NeRFNetwork
from functools import partial
from time import time
from distill_mutual.provider import NeRFDataset
from distill_mutual.utils import *
from IPython import embed
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def save_codes_env(workspace):
path = os.path.join(workspace, "codes_env")
os.makedirs(path, exist_ok=True)
os.system(f"cp *.py {path}")
os.system(f"cp -r raymarching {path}")
os.system(f"cp -r distill_mutual {path}")
os.system(f"cp -r nerf {path}")
def load_from_txt(opt, except_space=""):
# except_space = {'workspace', 'teacher_type', 'model_type', 'test', 'test_teacher', 'use_spiral_pose', 'ckpt_teacher'}
except_space = {"workspace"}
with open(
os.path.join(opt.ckpt_teacher.split("checkpoints")[0], "args.txt"), "r"
) as f: # change this path to your own params settings
load_args = f.readlines()
for i in range(1, len(load_args)):
if "(" in load_args[i]:
k, v = eval(load_args[i])
else:
continue
if k in opt and k not in except_space and v != opt.__dict__[k]:
print(k, v, opt.__dict__[k])
opt.__dict__[k] = v
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("path", type=str)
parser.add_argument(
"-O", action="store_true", help="equals --fp16 --cuda_ray --preload"
)
parser.add_argument("--test", action="store_true", help="test mode")
parser.add_argument("--workspace", type=str, default="workspace")
parser.add_argument("--seed", type=int, default=0)
# training options
parser.add_argument("--iters", type=int, default=30000, help="training iters")
parser.add_argument("--lr", type=float, default=1e-2, help="initial learning rate")
parser.add_argument("--ckpt", type=str, default="latest")
parser.add_argument(
"--num_rays",
type=int,
default=4096,
help="num rays sampled per image for each training step",
)
parser.add_argument(
"--cuda_ray",
action="store_true",
help="use CUDA raymarching instead of pytorch",
)
parser.add_argument(
"--max_steps",
type=int,
default=1024,
help="max num steps sampled per ray (only valid when using --cuda_ray)",
)
parser.add_argument(
"--num_steps",
type=int,
default=512,
help="num steps sampled per ray (only valid when NOT using --cuda_ray)",
)
parser.add_argument(
"--upsample_steps",
type=int,
default=0,
help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)",
)
parser.add_argument(
"--update_extra_interval",
type=int,
default=16,
help="iter interval to update extra status (only valid when using --cuda_ray)",
)
parser.add_argument(
"--max_ray_batch",
type=int,
default=4096,
help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)",
)
parser.add_argument(
"--fp16", action="store_true", help="use amp mixed precision training"
)
parser.add_argument(
"--mode",
type=str,
default="blender",
help="dataset mode, supports (colmap, blender)",
)
parser.add_argument(
"--color_space",
type=str,
default="srgb",
help="Color space, supports (linear, srgb)",
)
parser.add_argument(
"--preload",
action="store_true",
help="preload all data into GPU, accelerate training but use more GPU memory",
)
parser.add_argument(
"--bound",
type=float,
default=1,
help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.",
)
parser.add_argument(
"--scale",
type=float,
default=0.8,
help="scale camera location into box[-bound, bound]^3",
)
parser.add_argument(
"--dt_gamma",
type=float,
default=0,
help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)",
)
parser.add_argument(
"--min_near", type=float, default=0.2, help="minimum near distance for camera"
)
parser.add_argument(
"--density_thresh",
type=float,
default=10,
help="threshold for density grid to be occupied",
)
parser.add_argument(
"--bg_radius",
type=float,
default=-1,
help="if positive, use a background model at sphere(bg_radius)",
)
# experimental
parser.add_argument(
"--error_map", action="store_true", help="use error map to sample rays"
)
parser.add_argument(
"--clip_text", type=str, default="", help="text input for CLIP guidance"
)
parser.add_argument(
"--loss_type",
type=str,
default="normL2",
choices=["normL2", "L2", "normL1", "L1"],
)
parser.add_argument(
"--distill_mode",
type=str,
default="no_fix_mlp",
choices=["fix_mlp", "no_fix_mlp"],
help="fix mlp for hash",
)
parser.add_argument("--loss_rate_rgb", type=float, default=1.0)
parser.add_argument("--loss_rate_fea_sc", type=float, default=0.002)
parser.add_argument("--loss_rate_color", type=float, default=0.002)
parser.add_argument("--loss_rate_sigma", type=float, default=0.002)
parser.add_argument("--l1_reg_weight", type=float, default=1e-4)
parser.add_argument("--ckpt_teacher", type=str, default="")
parser.add_argument("--ckpt_student", type=str, default="")
parser.add_argument("--sigma_clip_min", type=float, default=-2)
parser.add_argument("--sigma_clip_max", type=float, default=7)
parser.add_argument("--render_stu_first", action="store_true", default=False)
parser.add_argument("--use_diagonal_matrix", action="store_true", default=False)
parser.add_argument("--test_teacher", action="store_true", default=False)
parser.add_argument("--test_metric", action="store_true", default=False)
parser.add_argument(
"--test_type_trainval", action="store_true", default=False
) # XXX
parser.add_argument("--PE", type=int, default=10)
parser.add_argument("--nerf_layer_num", type=int, default=8)
parser.add_argument("--nerf_layer_wide", type=int, default=256)
parser.add_argument("--skip", type=int, default=3)
parser.add_argument("--residual", type=int, default=3)
parser.add_argument("--resolution0", type=int, default=300)
parser.add_argument("--resolution1", type=int, default=300)
parser.add_argument(
"--upsample_model_steps", type=int, action="append", default=[1e10]
)
parser.add_argument("--teacher_type", default="hash", type=str)
parser.add_argument("--model_type", default="hash", type=str)
parser.add_argument(
"--data_type",
default="synthetic",
type=str,
choices=["synthetic", "llff", "tank"],
)
parser.add_argument("--update_stu_extra", action="store_true", default=False)
parser.add_argument("--ema_decay", type=float, default=-1.0)
parser.add_argument("--grid_size", type=int, default=128)
parser.add_argument("--plenoxel_degree", type=int, default=3)
parser.add_argument("--plenoxel_res", type=str, default="[128,128,128]")
parser.add_argument("--load_args", action="store_true", default=False)
parser.add_argument("--eval_interval_epoch", default=1e5, type=int, help="")
parser.add_argument(
"--use_real_data_for_train",
action="store_true",
default=False,
)
parser.add_argument("--enable_embed", action="store_true")
parser.add_argument("--enable_edit_plenoxel", action="store_true")
parser.add_argument(
"--stage_iters", type=str, default="{'stage1':2000, 'stage2':5000}"
)
opt = parser.parse_args()
opt.stage_iters = eval(opt.stage_iters)
opt.O = True # always use -O
opt.render_stu_first = True
if opt.model_type == "mlp":
opt.lr *= 0.1
if (
"tensors" == opt.model_type or "tensors" == opt.teacher_type
): # plenoxel have no features
opt.stage_iters["stage1"] = -1
save_codes_env(opt.workspace)
if opt.load_args:
load_from_txt(opt)
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
opt.preload = True
assert opt.model_type in ["hash", "mlp", "vm", "tensors"]
assert opt.teacher_type in ["hash", "mlp", "vm", "tensors"]
print(opt)
seed_everything(opt.seed)
model_tea = NeRFNetwork(
encoding="hashgrid",
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
model_type=opt.teacher_type,
args=opt,
grid_size=opt.grid_size,
is_teacher=True,
)
model_stu = NeRFNetwork(
encoding="hashgrid",
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
model_type=opt.model_type,
args=opt,
grid_size=opt.grid_size,
)
print("\nteacher:", model_tea)
print(f"\n{opt.model_type}", model_stu)
criterion = torch.nn.MSELoss(reduction="none")
# ------------------------------------ test-test-test-test-test ----------------------------------------------
if opt.test or opt.test_teacher or opt.test_type_trainval:
trainer = Trainer(
f"{opt.teacher_type}2{opt.model_type}",
opt,
model_tea,
model_stu,
device=device,
workspace=opt.workspace,
criterion=criterion,
fp16=opt.fp16,
metrics=[PSNRMeter()],
use_checkpoint=opt.ckpt,
ema_decay=opt.ema_decay,
)
if opt.test_type_trainval:
test_loader = NeRFDataset(opt, device=device, type="trainval").dataloader()
else:
test_loader = NeRFDataset(opt, device=device, type="test").dataloader()
if opt.mode == "blender":
trainer.evaluate(test_loader)
else:
trainer.test(test_loader)
# ------------------------------------ train-train-train-train ----------------------------------------------
else:
for p in model_tea.parameters():
p.requires_grad = False
if opt.distill_mode == "fix_mlp":
for n, p in model_stu.named_parameters():
if "sigma_net" in n or "color_net" in n:
p.requires_grad = False
idx = 1 if opt.model_type == "vm" else 3
optimizer = lambda model_stu: torch.optim.AdamW(
model_stu.get_params(opt.lr)[idx:],
betas=(0.9, 0.99),
eps=1e-15,
amsgrad=False,
)
else:
optimizer = lambda model_stu: torch.optim.AdamW(
model_stu.get_params(opt.lr),
betas=(0.9, 0.99),
eps=1e-15,
amsgrad=False,
)
# fake train loader. The real random data for distillating will be generated in utils.py
train_loader = NeRFDataset(opt, device=device, type="train").dataloader()
opt.iters = opt.iters + opt.iters % len(
train_loader
) # will be updated in utils according to the number of random data
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
scheduler = lambda optimizer: optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=opt.iters * 1, eta_min=5e-5
)
trainer = Trainer(
f"{opt.teacher_type}2{opt.model_type}",
opt,
model_tea,
model_stu,
device=device,
workspace=opt.workspace,
optimizer=optimizer,
criterion=criterion,
ema_decay=opt.ema_decay,
fp16=opt.fp16,
lr_scheduler=scheduler,
scheduler_update_every_step=True,
metrics=[PSNRMeter()],
use_checkpoint=opt.ckpt,
eval_interval=opt.eval_interval_epoch,
)
upsample_resolutions = (
(
np.round(
np.exp(
np.linspace(
np.log(opt.resolution0),
np.log(opt.resolution1),
len(opt.upsample_model_steps) + 1,
)
)
)
)
.astype(np.int32)
.tolist()[1:]
)
trainer.upsample_resolutions = upsample_resolutions
argstxt = sorted(opt.__dict__.items())
with open(os.path.join(opt.workspace, "args.txt"), "w") as f:
for t in argstxt:
f.write(str(t) + "\n")
start_time = time.time()
valid_loader = NeRFDataset(
opt, device=device, type="val", downscale=1
).dataloader()
test_loader = NeRFDataset(opt, device=device, type="test").dataloader()
trainer.train(train_loader, valid_loader, max_epoch)
end_time = time.time()
train_time = end_time - start_time
print(f"\nusing_time : {train_time:.2f}s\n")
# run test data
test_loader = NeRFDataset(opt, device=device, type="test").dataloader()
print(opt.workspace)
trainer.evaluate(test_loader)
with open(os.path.join(trainer.workspace, "args.txt"), "a+") as f:
txt = f"\npsnr: {trainer.psnr:.2f} \nssim: {trainer.ssim:.3f} \nalex: {trainer.lpips_alex:.3f}\nvgg:{trainer.lpips_vgg:.3f}"
f.write(txt)
cmd = f"mv {trainer.workspace} {trainer.workspace}-pnsr{trainer.psnr}"
os.system(cmd)