-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
93 lines (82 loc) · 3.87 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import csv
import numpy as np
import os
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_holistic = mp.solutions.holistic
actions = ['እንደገና','አውሮፕላን']
with mp_holistic.Holistic(
static_image_mode=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as holistic:
for action in actions:
frames = os.listdir('frames-processed/{}'.format(action))
for frame in frames:
cap = cv2.VideoCapture(
'/home/mekbibtarekegn/ETHSL-MediaPipe/frames-processed/{}/{}'.format(action, frame))
print(frame)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
break
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = holistic.process(image)
# Draw landmark annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# mp_drawing.draw_landmarks(
# image,
# results.face_landmarks,
# mp_holistic.FACEMESH_CONTOURS,
# landmark_drawing_spec=None,
# connection_drawing_spec=mp_drawing_styles
# .get_default_face_mesh_contours_style())
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_holistic.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles
.get_default_pose_landmarks_style())
mp_drawing.draw_landmarks(
image,
results.left_hand_landmarks,
mp_holistic.HAND_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles
.get_default_pose_landmarks_style())
mp_drawing.draw_landmarks(
image,
results.right_hand_landmarks,
mp_holistic.HAND_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles
.get_default_pose_landmarks_style())
# Flip the image horizontally for a selfie-view display.
try:
# Extract Pose landmarks
pose = list(np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten(
) if results.pose_landmarks else np.zeros(33*4))
lh = list(np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten(
) if results.left_hand_landmarks else np.zeros(21*3))
rh = list(np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten(
) if results.right_hand_landmarks else np.zeros(21*3))
# Concate rows
row = pose + lh+rh
# Append class name
row.insert(0, action)
# Export to CSV
with open('coords.csv', mode='a', newline='') as f:
csv_writer = csv.writer(
f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(row)
except:
pass
cv2.imshow('MediaPipe Holistic', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()