-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrequirements.lock
591 lines (590 loc) · 11 KB
/
requirements.lock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# generated by rye
# use `rye lock` or `rye sync` to update this lockfile
#
# last locked with the following flags:
# pre: false
# features: []
# all-features: false
# with-sources: false
# generate-hashes: false
# universal: false
-e file:.
absl-py==2.1.0
# via chex
# via ml-collections
# via optax
# via orbax-checkpoint
# via tensorboard
aiohappyeyeballs==2.4.4
# via aiohttp
aiohttp==3.11.10
# via fsspec
aiosignal==1.3.2
# via aiohttp
anndata==0.11.1
# via doubletdetection
# via mudata
# via parafac2
# via scanpy
# via sccp
# via scib
# via scvi-tools
annoy==1.17.3
# via pacmap
# via scanorama
array-api-compat==1.8
# via anndata
asttokens==2.4.1
# via stack-data
attrs==24.3.0
# via aiohttp
certifi==2024.8.30
# via requests
charset-normalizer==3.3.2
# via requests
chex==0.1.88
# via optax
click==8.1.7
# via dask
cloudpickle==3.0.0
# via dask
colorcet==3.1.0
# via datashader
comm==0.2.2
# via ipywidgets
contourpy==1.3.0
# via matplotlib
cupy-cuda12x==13.3.0
# via parafac2
cycler==0.12.1
# via matplotlib
dask==2024.8.2
# via dask-expr
# via datashader
# via sccp
dask-expr==1.1.13
# via dask
datashader==0.16.3
# via sccp
decorator==5.1.1
# via ipython
deprecated==1.2.14
# via scib
docrep==0.3.2
# via scvi-tools
doubletdetection==4.2
# via sccp
etils==1.11.0
# via optax
# via orbax-checkpoint
executing==2.1.0
# via stack-data
fastrlock==0.8.2
# via cupy-cuda12x
fbpca==1.0
# via geosketch
# via scanorama
filelock==3.16.1
# via torch
# via triton
flax==0.10.2
# via scvi-tools
fonttools==4.53.1
# via matplotlib
frozenlist==1.5.0
# via aiohttp
# via aiosignal
fsspec==2024.9.0
# via dask
# via etils
# via lightning
# via pytorch-lightning
# via torch
geosketch==1.3
# via scanorama
grpcio==1.68.1
# via tensorboard
gseapy==1.1.3
# via sccp
h5netcdf==1.3.0
# via sccp
h5py==3.11.0
# via anndata
# via h5netcdf
# via scanpy
# via scib
harmonypy==0.0.10
# via sccp
humanize==4.11.0
# via orbax-checkpoint
idna==3.8
# via requests
# via yarl
igraph==0.11.6
# via leidenalg
# via louvain
# via scib
importlib-resources==6.4.5
# via etils
intervaltree==3.1.0
# via scanorama
ipython==8.27.0
# via ipywidgets
ipywidgets==8.1.5
# via doubletdetection
jax==0.4.38
# via chex
# via flax
# via numpyro
# via optax
# via orbax-checkpoint
# via scvi-tools
jaxlib==0.4.38
# via chex
# via jax
# via numpyro
# via optax
# via scvi-tools
jedi==0.19.1
# via ipython
jinja2==3.1.4
# via torch
joblib==1.4.2
# via pynndescent
# via scanpy
# via scikit-learn
jupyterlab-widgets==3.0.13
# via ipywidgets
kiwisolver==1.4.7
# via matplotlib
legacy-api-wrap==1.4
# via scanpy
leidenalg==0.10.2
# via doubletdetection
# via phenograph
# via sccp
# via scib
lightning==2.4.0
# via scvi-tools
lightning-utilities==0.11.9
# via lightning
# via pytorch-lightning
# via torchmetrics
llvmlite==0.43.0
# via numba
# via pynndescent
# via scib
locket==1.0.0
# via partd
louvain==0.8.2
# via doubletdetection
markdown==3.7
# via tensorboard
markdown-it-py==3.0.0
# via rich
markupsafe==3.0.2
# via jinja2
# via werkzeug
matplotlib==3.9.2
# via doubletdetection
# via gseapy
# via scanorama
# via scanpy
# via scib
# via seaborn
# via tlviz
matplotlib-inline==0.1.7
# via ipython
mdurl==0.1.2
# via markdown-it-py
ml-collections==1.0.0
# via scvi-tools
ml-dtypes==0.5.0
# via jax
# via jaxlib
# via tensorstore
mpmath==1.3.0
# via sympy
msgpack==1.1.0
# via flax
# via orbax-checkpoint
mudata==0.3.1
# via scvi-tools
multidict==6.1.0
# via aiohttp
# via yarl
multipledispatch==1.0.0
# via datashader
# via numpyro
natsort==8.4.0
# via anndata
# via scanpy
nest-asyncio==1.6.0
# via orbax-checkpoint
networkx==3.3
# via scanpy
# via torch
numba==0.60.0
# via datashader
# via pacmap
# via pynndescent
# via scanpy
# via scib
# via scvi-tools
# via sparse
# via umap-learn
numpy==2.0.2
# via anndata
# via chex
# via contourpy
# via cupy-cuda12x
# via dask
# via datashader
# via doubletdetection
# via flax
# via geosketch
# via gseapy
# via h5py
# via harmonypy
# via jax
# via jaxlib
# via matplotlib
# via ml-dtypes
# via numba
# via numpyro
# via optax
# via orbax-checkpoint
# via pacmap
# via pandas
# via parafac2
# via patsy
# via phenograph
# via pyarrow
# via pyro-ppl
# via scanorama
# via scanpy
# via sccp
# via scib
# via scikit-learn
# via scikit-misc
# via scipy
# via scvi-tools
# via seaborn
# via sparse
# via statsmodels
# via tensorboard
# via tensorly
# via tensorstore
# via tlviz
# via torchmetrics
# via umap-learn
# via xarray
numpyro==0.16.1
# via scvi-tools
nvidia-cublas-cu12==12.4.5.8
# via nvidia-cudnn-cu12
# via nvidia-cusolver-cu12
# via torch
nvidia-cuda-cupti-cu12==12.4.127
# via torch
nvidia-cuda-nvrtc-cu12==12.4.127
# via torch
nvidia-cuda-runtime-cu12==12.4.127
# via torch
nvidia-cudnn-cu12==9.1.0.70
# via torch
nvidia-cufft-cu12==11.2.1.3
# via torch
nvidia-curand-cu12==10.3.5.147
# via torch
nvidia-cusolver-cu12==11.6.1.9
# via torch
nvidia-cusparse-cu12==12.3.1.170
# via nvidia-cusolver-cu12
# via torch
nvidia-nccl-cu12==2.21.5
# via torch
nvidia-nvjitlink-cu12==12.4.127
# via nvidia-cusolver-cu12
# via nvidia-cusparse-cu12
# via torch
nvidia-nvtx-cu12==12.4.127
# via torch
opt-einsum==3.4.0
# via jax
# via pyro-ppl
optax==0.2.4
# via flax
# via scvi-tools
orbax-checkpoint==0.10.2
# via flax
packaging==24.1
# via anndata
# via dask
# via datashader
# via h5netcdf
# via lightning
# via lightning-utilities
# via matplotlib
# via pytorch-lightning
# via scanpy
# via statsmodels
# via tensorboard
# via torchmetrics
# via xarray
pacmap==0.7.3
# via parafac2
# via sccp
pandas==2.2.2
# via anndata
# via dask
# via dask-expr
# via datashader
# via doubletdetection
# via gseapy
# via harmonypy
# via scanpy
# via sccp
# via scib
# via scvi-tools
# via seaborn
# via statsmodels
# via tlviz
# via xarray
parafac2 @ git+https://github.com/meyer-lab/parafac2.git@6600c677a77d0f242668babf39559cf7953ff534
# via sccp
param==2.1.1
# via datashader
# via pyct
parso==0.8.4
# via jedi
partd==1.4.2
# via dask
patsy==0.5.6
# via scanpy
# via statsmodels
pexpect==4.9.0
# via ipython
phenograph==1.5.7
# via doubletdetection
pillow==10.4.0
# via datashader
# via matplotlib
prompt-toolkit==3.0.47
# via ipython
propcache==0.2.1
# via aiohttp
# via yarl
protobuf==5.29.2
# via orbax-checkpoint
# via tensorboard
psutil==6.0.0
# via phenograph
ptyprocess==0.7.0
# via pexpect
pure-eval==0.2.3
# via stack-data
pyarrow==17.0.0
# via dask-expr
pyct==0.5.0
# via datashader
pydot==3.0.1
# via scib
pygments==2.18.0
# via ipython
# via rich
pynndescent==0.5.13
# via scanpy
# via umap-learn
pyparsing==3.1.4
# via matplotlib
# via pydot
pyro-api==0.1.2
# via pyro-ppl
pyro-ppl==1.9.1
# via scvi-tools
python-dateutil==2.9.0.post0
# via matplotlib
# via pandas
pytorch-lightning==2.4.0
# via lightning
pytz==2024.2
# via pandas
pyyaml==6.0.2
# via dask
# via flax
# via lightning
# via ml-collections
# via orbax-checkpoint
# via pytorch-lightning
requests==2.32.3
# via datashader
# via gseapy
# via tlviz
rich==13.9.4
# via flax
# via scvi-tools
scanorama==1.7.4
# via sccp
scanpy==1.10.4
# via doubletdetection
# via sccp
# via scib
scib==1.1.5
# via sccp
scikit-learn==1.6.0
# via geosketch
# via harmonypy
# via pacmap
# via parafac2
# via phenograph
# via pynndescent
# via scanorama
# via scanpy
# via sccp
# via scib
# via scvi-tools
# via umap-learn
scikit-misc==0.5.1
# via scib
scipy==1.14.1
# via anndata
# via datashader
# via doubletdetection
# via gseapy
# via harmonypy
# via jax
# via jaxlib
# via parafac2
# via phenograph
# via pynndescent
# via scanorama
# via scanpy
# via sccp
# via scib
# via scikit-learn
# via scvi-tools
# via sparse
# via statsmodels
# via tensorly
# via tlviz
# via umap-learn
scvi-tools==1.2.2.post1
# via sccp
seaborn==0.13.2
# via scanpy
# via sccp
# via scib
session-info==1.0.0
# via scanpy
setuptools==74.1.2
# via chex
# via lightning-utilities
# via phenograph
# via tensorboard
# via torch
simplejson==3.19.3
# via orbax-checkpoint
six==1.16.0
# via asttokens
# via docrep
# via ml-collections
# via patsy
# via python-dateutil
# via tensorboard
sortedcontainers==2.4.0
# via intervaltree
sparse==0.15.4
# via scvi-tools
stack-data==0.6.3
# via ipython
statsmodels==0.14.2
# via scanpy
# via sccp
# via tlviz
stdlib-list==0.10.0
# via session-info
sympy==1.13.1
# via torch
tensorboard==2.18.0
# via scvi-tools
tensorboard-data-server==0.7.2
# via tensorboard
tensorly==0.8.1
# via parafac2
# via sccp
tensorstore==0.1.71
# via flax
# via orbax-checkpoint
texttable==1.7.0
# via igraph
threadpoolctl==3.5.0
# via scikit-learn
tlviz==0.1.1
# via parafac2
# via sccp
toolz==0.12.1
# via chex
# via dask
# via datashader
# via partd
torch==2.5.1
# via lightning
# via pyro-ppl
# via pytorch-lightning
# via scvi-tools
# via torchmetrics
torchmetrics==1.6.0
# via lightning
# via pytorch-lightning
# via scvi-tools
tqdm==4.66.5
# via doubletdetection
# via lightning
# via numpyro
# via parafac2
# via pyro-ppl
# via pytorch-lightning
# via scanpy
# via sccp
# via scvi-tools
# via umap-learn
traitlets==5.14.3
# via comm
# via ipython
# via ipywidgets
# via matplotlib-inline
triton==3.1.0
# via torch
typing-extensions==4.12.2
# via chex
# via etils
# via flax
# via lightning
# via lightning-utilities
# via orbax-checkpoint
# via pytorch-lightning
# via torch
tzdata==2024.1
# via pandas
umap-learn==0.5.6
# via scanpy
# via scib
urllib3==2.2.3
# via requests
wcwidth==0.2.13
# via prompt-toolkit
werkzeug==3.1.3
# via tensorboard
widgetsnbextension==4.0.13
# via ipywidgets
wrapt==1.16.0
# via deprecated
xarray==2024.9.0
# via datashader
# via scvi-tools
# via tlviz
yarl==1.18.3
# via aiohttp
zipp==3.20.2
# via etils