-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspanning_tree_plots.py
248 lines (225 loc) · 8.91 KB
/
spanning_tree_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""Wasserstein trace plots for RevReCom paper."""
import json
import numpy as np
import requests
import click
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
from client import ChainDBClient
from typing import List, Dict, Optional
from collections import Counter
from scipy.stats import wasserstein_distance
from tqdm import tqdm
FIG_SIZES = {
'wasserstein': (10, 6),
'boxplots': (16, 8)
}
@click.command()
@click.option('--chain-data', multiple=True)
@click.option('--chain-label', multiple=True)
@click.option('--end-step', type=int)
@click.option('--fig-title')
@click.option('--fig-file', required=True)
@click.option('--fig-type', default='wasserstein')
@click.option('--wasserstein-resolution', default=1000, type=int)
def main(chain_data, chain_label, end_step, fig_title, fig_file,
fig_type, wasserstein_resolution):
print(chain_data)
print(chain_label)
shares = {}
weights = {}
for filename, label in zip(chain_data, chain_label):
chain_shares, chain_weights, chain_meta = load_from_jsonl(
filename, end_step)
print(chain_meta)
shares[label] = chain_shares
weights[label] = chain_weights
fig, ax = plt.subplots(figsize=FIG_SIZES[fig_type])
if fig_type == 'wasserstein':
for outer_idx, outer_label in enumerate(chain_label):
for inner_idx, inner_label in enumerate(chain_label):
if inner_idx > outer_idx:
xs, dists = wasserstein_trace(shares[outer_label],
shares[inner_label],
weights[outer_label],
weights[inner_label],
wasserstein_resolution)
ax.plot(xs,
dists,
label=f'{outer_label} vs. {inner_label}')
ax.set_xlabel('Unique steps')
ax.set_ylabel('Distance')
elif fig_type == 'boxplots':
stats = [
raw_to_hists(shares[label], weights[label])
for label in chain_label
]
shares_boxplot_by_chain(stats,
chain_label,
ax,
min_col=None,
max_col=None)
ax.set_xlabel('District')
ax.set_ylabel('log(sp)')
ax.legend()
ax.set_title(fig_title)
plt.savefig(fig_file, bbox_inches='tight')
plt.close(fig)
def wasserstein_trace(shares1, shares2, weights1, weights2, resolution):
n_districts = len(shares1[0])
assert len(shares1[0]) == len(shares2[0])
state1 = np.zeros(n_districts)
state2 = np.zeros(n_districts)
xticks = []
trace = []
hist1 = [Counter() for _ in range(n_districts)]
hist2 = [Counter() for _ in range(n_districts)]
for step, (s1, s2, w1,
w2) in enumerate(tqdm(zip(shares1, shares2, weights1,
weights2))):
# We assume 1-indexed districts.
for dist, v in s1.items():
state1[dist] = v
for dist, v in s2.items():
state2[dist] = v
for k, v in enumerate(sorted(state1)):
hist1[k][v] += w1
for k, v in enumerate(sorted(state2)):
hist2[k][v] += w2
if step > 0 and step % resolution == 0:
distance = 0
for dist1, dist2 in zip(hist1, hist2):
distance += wasserstein_distance(list(dist1.keys()),
list(dist2.keys()),
list(dist1.values()),
list(dist2.values()))
xticks.append(step)
trace.append(distance)
return xticks, trace
def raw_to_hists(shares, weights):
n_districts = len(shares[0])
state = np.zeros(n_districts)
hists = [Counter() for _ in range(n_districts)]
for step, weight in zip(shares, weights):
# We assume 1-indexed districts.
for dist, v in step.items():
state[int(dist) - 1] = v
for k, v in enumerate(sorted(state)):
hists[k][v] += weight
return hists
def summary_stats(hist: Dict[float, float]) -> Dict[str, float]:
items = sorted(hist.items(), key=lambda kv: kv[0])
vals = np.array([kv[0] for kv in items])
weights = np.array([kv[1] for kv in items])
size = len(items)
# see https://stackoverflow.com/a/22639392
percentiles = 100 * np.cumsum(weights) / np.sum(weights)
def percentile(p: float) -> float:
idx = max(min(len(percentiles[percentiles <= p]) - 1, size - 1), 0)
return vals[idx]
# TODO (mean, median, q1, q3, configurable tails, mean, mode,
# stddev, min, max)
mean = np.average(vals, weights=weights)
# NumPy does not include a weighted stddev function. See
# https://stackoverflow.com/a/2415343
stddev = np.sqrt(np.average((vals - mean)**2, weights=weights))
# TODO: what percentiles should be included here?
# (e.g. 68-95-99.7?) Can we compute them more efficiently?
return {
'mean': mean,
'stddev': stddev,
'p0.1': percentile(0.1),
'p1': percentile(1),
'p5': percentile(5),
'p10': percentile(10),
'q1': percentile(25),
'median': percentile(50),
'q3': percentile(75),
'p90': percentile(90),
'p95': percentile(95),
'p99': percentile(99),
'p99.9': percentile(99.9),
'min': np.min(vals),
'max': np.max(vals),
'modes': list(vals[weights == np.max(weights)])
}
def box_style(bp, color, ax, label=None):
# from https://stackoverflow.com/a/20132614
plt.setp(bp['boxes'], color=color)
plt.setp(bp['whiskers'], color=color)
plt.setp(bp['caps'], color=color)
plt.setp(bp['medians'], color=color)
plt.setp(bp['fliers'], markerfacecolor=color, marker='.', markersize=7)
if label:
ax.plot([], c=color, label=label)
def shares_boxplot_by_chain(chains: List,
labels: List[str],
ax,
whislo_col: str = 'p1',
whishi_col: str = 'p99',
min_col: Optional[str] = 'min',
max_col: Optional[str] = 'max',
mean_col: Optional[str] = None,
cmap: str = 'tab20',
colors: Optional[List[str]] = None,
**kwargs):
n_chains = len(chains)
n_districts = len(chains[0])
def color(idx):
if colors:
return colors[idx % len(colors)]
return get_cmap(cmap)(idx)
offset = n_chains / 2
for idx, (chain, label) in enumerate(zip(chains, labels)):
summary = [summary_stats(dist) for dist in chain]
boxes = []
for district in summary:
bxp_data = {
'q1': district['q1'],
'med': district['median'],
'q3': district['q3'],
'fliers': []
}
if whislo_col and whishi_col:
bxp_data['whislo'] = district[whislo_col]
bxp_data['whishi'] = district[whishi_col]
if mean_col:
bxp_data['mean'] = district[mean_col]
if min_col and max_col:
bxp_data['fliers'] = [district[min_col], district[max_col]]
boxes.append(bxp_data)
bp = ax.bxp(boxes,
showmeans=(mean_col is not None),
positions=(n_chains * np.arange(n_districts)) +
(0.8 * (idx - offset)))
box_style(bp, color(idx), ax, label=label)
ax.set_xticks(range(0, n_chains * n_districts, n_chains))
ax.set_xticklabels(range(1, n_districts + 1))
def load_from_jsonl(filename, end_step=None):
"""Loads spanning tree log-counts from a JSONL file."""
log_counts = []
weights = []
with open(filename) as f:
meta = json.loads(f.readline())['meta']
init = json.loads(f.readline())['init']
st_init = np.array(init['spanning_tree_counts'])
log_counts.append({
dist: float(np.log(s))
for dist, s in enumerate(st_init)
})
for idx, line in enumerate(tqdm(f)):
step = json.loads(line)['step']
if end_step is not None and idx > end_step:
break
weight = 1 + sum(
step['counts'].get(c, 0)
for c in ('no_split', 'non_adjacent', 'seam_length'))
log_counts.append({
dist: float(np.log(c))
for dist, c in zip(step['dists'], step['spanning_tree_counts'])
})
weights.append(weight)
# correct weight lag by removing last step
return log_counts[:-1], weights, meta
if __name__ == '__main__':
main()