-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_single.py
executable file
·84 lines (65 loc) · 2.37 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#-------------------------------------------------------------------------------------
# Copyright 2014 Michael Peeri
#
# This file is part of hmmdsl.
# hmmdsl is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# hmmdsl is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with hmmdsl. If not, see <http://www.gnu.org/licenses/>.
#-------------------------------------------------------------------------------------
import sys
import getopt
import collections # for deque
from math import exp
import hmmdsl_py
import dotio
import training
# Simple nullary function returning RNG-generated numbers, seeded using /dev/random
class _rng:
def __init__(self):
from random import random, Random, SystemRandom
init = SystemRandom()
self.rng = Random(init.random())
def __call__(self):
return self.rng.random()
#a = UtilityMaximiser(3)
#a.SetUtility(0, 5)
#a.SetUtility(1, 2)
#a.SetUtility(2, 3)
def main_test(model_file, fasta_file, args = None):
print( " *** Training model ***" )
model = dotio.load( model_file )
print(type(model))
training.train(fasta_file, model, [], 0.05)
#model.debug_print()
dotio.WriteDOT(model, "{}_train_vs_effectors.faa.dot".format(model_file) )
dotio.store(model, "{}_train_vs_effectors.faa.pickle".format(model_file) )
class UsageError(Exception):
def __init__(self, msg):
self.msg = msg
def main(argv=None):
if argv is None:
argv = sys.argv
try:
try:
opts, args = getopt.getopt(argv[1:], "h", ["help"])
except getopt.GetoptError as err:
raise UsageError(err)
if( len(argv) < 2 ):
raise UsageError("No model specified");
if( len(argv) < 3 ):
raise UsageError("No sequences specified");
main_test(argv[1], argv[2], argv)
except UsageError as err:
print( err.msg )
return 2;
if __name__ == "__main__":
sys.exit(main())