-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspinningtreei.py
97 lines (73 loc) · 2.35 KB
/
spinningtreei.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import unittest
class UnionFind:
def __init__(self, size):
self.size = size
self.num_components = size
self.component_size = [1 for i in range(size)]
self.ids = [i for i in range(size)]
def find(self, p):
root = p
while root != self.ids[root]:
root = self.ids[root]
while p != self.ids[p] and self.ids[p] != root:
next = self.ids[p]
self.ids[p] = root
p = next
return root
def unify(self, p, q):
if self.is_connected(p, q):
return
root1 = self.find(p)
root2 = self.find(q)
if self.component_size[root1] > self.component_size[root2]:
self.component_size[root1] += self.component_size[root2]
self.ids[root2] = root1
else:
self.component_size[root2] += self.component_size[root1]
self.ids[root1] = root2
self.num_components -= 1
def get_num_of_component(self):
return self.num_components
def get_component_size(self, p):
return self.component_size[self.find(p)]
def is_connected(self, p, q):
return self.find(p) == self.find(q)
def get_size(self):
return self.size
def min_cost_to_connect_all_nodes(n, edges, new_edges):
if not new_edges:
return 0
# adjust all node by -1 because Union Find start from 0 but given input start from 1
for e in edges:
e[0] -= 1
e[1] -= 1
for e in new_edges:
e[0] -= 1
e[1] -= 1
uf = UnionFind(n)
# Unify all current vertices
for e in edges:
uf.unify(e[0], e[1])
# If all vertices are connected then just return 0
if uf.get_num_of_component() == 1:
return 0
# Sort new edges to apply Krusal MST algorithms
new_edges.sort(key=lambda e: e[2])
res = 0
for e in new_edges:
fr, to, cost = e[0], e[1], e[2]
# Skip if already connected
if uf.is_connected(fr, to):
continue
res += cost
# Unify 2 unconnected components
uf.unify(fr, to)
# all nodes are connected
if uf.get_num_of_component() == 1:
break
return res
n = 6
edges = [[1, 4], [4, 5], [2, 3]]
new_edges = [[1, 2, 5], [1, 3, 10], [1, 6, 2], [5, 6, 5]]
result =min_cost_to_connect_all_nodes(n, edges, new_edges)
print (result)