-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcifar-semi.py
executable file
·326 lines (273 loc) · 12.6 KB
/
cifar-semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""Train CIFAR10 with PyTorch."""
import argparse
import os
import random
import time
from pprint import pprint
import numpy as np
from skimage.color import rgb2gray
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.tensorboard import SummaryWriter
from lib.datasets import PseudoCIFAR10
from lib.utils import AverageMeter, accuracy, CosineAnnealingLRWithRestart
from lib.models import WideResNet, resnet18_cifar
from test import validate
def get_dataloader(args):
if not args.input_gray:
normalize = transforms.Normalize(
(0.4914, 0.4822, 0.4465),
(0.2470, 0.2435, 0.2616))
transform_train = transforms.Compose([
transforms.Pad(4, padding_mode='reflect'),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
else:
to_gray = transforms.Lambda(lambda img: torch.from_numpy(
rgb2gray(np.array(img))).unsqueeze(0).float())
transform_train = transforms.Compose([
transforms.Pad(4, padding_mode='reflect'),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
to_gray,
])
transform_test = to_gray
testset = CIFAR10(root=args.data_dir, train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, shuffle=False,
batch_size=args.batch_size,
num_workers=args.num_workers)
trainset = CIFAR10(root=args.data_dir, train=True,
download=True, transform=transform_test)
args.ndata = len(trainset)
num_labeled_data = args.num_labeled
num_unlabeled_data = args.ndata - num_labeled_data
if args.pseudo_file is not None:
pseudo_dict = torch.load(args.pseudo_file)
labeled_indexes = pseudo_dict['labeled_indexes']
else:
torch.manual_seed(args.rng_seed)
perm = torch.randperm(args.ndata)
labeled_indexes = perm[:num_labeled_data]
pseudo_trainset = PseudoCIFAR10(
labeled_indexes=labeled_indexes, root=args.data_dir,
train=True, transform=transform_train)
# load pseudo labels
if args.pseudo_file is not None:
pseudo_num = int(num_unlabeled_data * args.pseudo_ratio)
pseudo_indexes = pseudo_dict['pseudo_indexes'][:pseudo_num]
pseudo_labels = pseudo_dict['pseudo_labels'][:pseudo_num]
pseudo_trainset.set_pseudo(pseudo_indexes, pseudo_labels)
pseudo_trainloder = torch.utils.data.DataLoader(
pseudo_trainset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
print('-' * 80)
print('selected labeled indexes: ', labeled_indexes)
return testloader, pseudo_trainloder
def build_model(args):
if args.architecture == 'resnet18':
net = resnet18_cifar(low_dim=args.num_class, norm=False)
elif args.architecture.startswith('wrn'):
split = args.architecture.split('-')
net = WideResNet(depth=int(split[1]), widen_factor=int(split[2]),
num_classes=args.num_class, norm=False)
else:
raise ValueError('architecture should be resnet18 or wrn')
if args.input_gray:
net.conv1 = nn.Conv2d(1, net.conv1.out_channels,
kernel_size=3, stride=1, padding=1, bias=False)
net = net.to(args.device)
print('#param: {}'.format(sum([p.nelement() for p in net.parameters()])))
if args.device == 'cuda':
net = torch.nn.DataParallel(
net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
# resume from unsupervised pretrain
if len(args.resume) > 0:
# Load checkpoint.
print('==> Resuming from unsupervised pretrained checkpoint..')
checkpoint = torch.load(args.resume)
# only load shared conv layers, don't load fc
model_dict = net.state_dict()
if not args.input_gray:
pretrained_dict = checkpoint['net']
else:
lst = ['conv1', 'block1', 'block2', 'block3']
pretrained_dict = {
'module.' + lst[int(k[0])] + k[1:]: v for k, v in checkpoint.items()}
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if k in model_dict
and v.size() == model_dict[k].size()}
assert len(pretrained_dict) > 0
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
return net
def get_lr_scheduler(optimizer, lr_scheduler, max_iters):
if args.lr_scheduler == 'cosine':
scheduler = CosineAnnealingLR(optimizer, max_iters, eta_min=0.00001)
elif args.lr_scheduler == 'cosine-with-restart':
scheduler = CosineAnnealingLRWithRestart(optimizer, eta_min=0.00001)
else:
raise ValueError("not supported")
return scheduler
# Training
def train(net, optimizer, scheduler, trainloader, testloader, criterion, summary_writer, args):
train_loss = AverageMeter()
data_time = AverageMeter()
batch_time = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
best_acc = 0
end = time.time()
def inf_generator(trainloader):
while True:
for data in trainloader:
yield data
for step, (inputs, targets) in enumerate(inf_generator(trainloader)):
if step >= args.max_iters:
break
data_time.update(time.time() - end)
inputs = inputs.to(args.device)
targets = targets.to(args.device)
# switch to train mode
net.train()
scheduler.step()
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets).mean()
prec1, prec2 = accuracy(outputs, targets, topk=(1, 2))
top1.update(prec1[0], inputs.size(0))
top2.update(prec2[0], inputs.size(0))
loss.backward()
optimizer.step()
train_loss.update(loss.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
summary_writer.add_scalar('lr', optimizer.param_groups[0]['lr'], step)
summary_writer.add_scalar('top1', top1.val, step)
summary_writer.add_scalar('top2', top2.val, step)
summary_writer.add_scalar('batch_time', batch_time.val, step)
summary_writer.add_scalar('data_time', data_time.val, step)
summary_writer.add_scalar('train_loss', train_loss.val, step)
if step % args.print_freq == 0:
lr = optimizer.param_groups[0]["lr"]
print(f'Train: [{step}/{args.max_iters}] '
f'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
f'Data: {data_time.val:.3f} ({data_time.avg:.3f}) '
f'Lr: {lr:.5f} '
f'prec1: {top1.val:.3f} ({top1.avg:.3f}) '
f'prec2: {top2.val:.3f} ({top2.avg:.3f}) '
f'Loss: {train_loss.val:.4f} ({train_loss.avg:.4f})')
if (step + 1) % args.eval_freq == 0 or step == args.max_iters - 1:
acc = validate(testloader, net, criterion,
device=args.device, print_freq=args.print_freq)
summary_writer.add_scalar('val_top1', acc, step)
if acc > best_acc:
best_acc = acc
state = {
'step': step,
'best_acc': best_acc,
'net': net.state_dict(),
'optimizer': optimizer.state_dict(),
}
os.makedirs(args.model_dir, exist_ok=True)
torch.save(state, os.path.join(args.model_dir, 'ckpt.pth.tar'))
print('best accuracy: {:.2f}\n'.format(best_acc))
def main(args):
# Data
print('==> Preparing data..')
testloader, pseudo_trainloder = get_dataloader(args)
print('==> Building model..')
net = build_model(args)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9,
weight_decay=5e-4, nesterov=True)
criterion = nn.__dict__[args.criterion]().to(args.device)
scheduler = get_lr_scheduler(optimizer, args.lr_scheduler, args.max_iters)
if args.eval:
return validate(testloader, net, criterion,
device=args.device, print_freq=args.print_freq)
# summary writer
os.makedirs(args.log_dir, exist_ok=True)
summary_writer = SummaryWriter(args.log_dir)
train(net, optimizer, scheduler, pseudo_trainloder,
testloader, criterion, summary_writer, args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--data_dir', '--dataDir', default='./data',
type=str, metavar='DIR')
parser.add_argument('--model-root', default='./checkpoint/cifar10-semi',
type=str, metavar='DIR',
help='root directory to save checkpoint')
parser.add_argument('--log-root', default='./tensorboard/cifar10-semi',
type=str, metavar='DIR',
help='root directory to save tensorboard logs')
parser.add_argument('--exp-name', default='exp', type=str,
help='experiment name, used to determine log_dir and model_dir')
parser.add_argument('--lr', default=0.01, type=float,
metavar='LR', help='learning rate')
parser.add_argument('--lr-scheduler', default='cosine', type=str,
choices=['multi-step', 'cosine',
'cosine-with-restart'],
help='which lr scheduler to use')
parser.add_argument('--resume', '-r', default='', type=str,
metavar='FILE', help='resume from checkpoint')
parser.add_argument('--eval', action='store_true', help='test only')
parser.add_argument('--finetune', action='store_true',
help='only training last fc layer')
parser.add_argument('-j', '--num-workers', default=2, type=int,
metavar='N', help='number of workers to load data')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='batch size')
parser.add_argument('--max-iters', default=500000, type=int,
metavar='N', help='number of iterations')
parser.add_argument('--num-labeled', default=500, type=int,
metavar='N', help='number of labeled data')
parser.add_argument('--rng-seed', default=0, type=int,
metavar='N', help='random number generator seed')
parser.add_argument('--gpus', default='0', type=str, metavar='GPUS')
parser.add_argument('--eval-freq', default=500, type=int,
metavar='N', help='eval frequence')
parser.add_argument('--print-freq', default=100, type=int,
metavar='N', help='print frequence')
parser.add_argument('--criterion', default='CrossEntropyLoss', type=str,
choices=['CrossEntropyLoss', 'MultiMarginLoss'])
parser.add_argument('--pseudo-file', type=str,
metavar='FILE', help='pseudo file to load', required=True)
parser.add_argument('--input-gray', action='store_true',
help='set for load colorization pretrained model, '
'(colorization model use gray image as input)')
parser.add_argument('--pseudo-ratio', default=1, type=float, metavar='0-1',
help='ratio of unlabeled data to use for pseudo labels')
parser.add_argument('--architecture', '--arch', default='wrn-28-2', type=str,
help='which backbone to use')
args, rest = parser.parse_known_args()
print(rest)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
args.num_class = 10
args.log_dir = os.path.join(args.log_root, args.exp_name)
args.model_dir = os.path.join(args.model_root, args.exp_name)
torch.manual_seed(args.rng_seed)
torch.cuda.manual_seed(args.rng_seed)
random.seed(args.rng_seed)
torch.set_printoptions(threshold=50, precision=4)
print('-' * 80)
pprint(vars(args))
main(args)
print('-' * 80)
pprint(vars(args))