-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathM-comp.cpp
229 lines (194 loc) · 8.88 KB
/
M-comp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright 2021 András Mihálykó MIT License
#include <queue>
#include <utility>
#include <iostream>
#include "graph.h"
#include "M-comp.h"
void M_compHyperGraph::print() const {
std::cout << "(k, ell) = (" << k <<", " << ell << ")" << std::endl;
DirectedHyperGraph::printUndirectedHyperedges();
}
std::shared_ptr<HyperEdge> M_compHyperGraph::makeNewHyperEdge(
const std::vector<std::shared_ptr<Vertex> >& vert) {
int newID = static_cast<int>(undirectedHyperEdges.size());
std::shared_ptr<HyperEdge> newHyperEdge =
std::make_shared<HyperEdge>(vert, newID);
return newHyperEdge;
}
void M_compHyperGraph::changeDirection(Node<std::shared_ptr<DirectedHyperEdge> >* edge
/*comes from the list head->isHeadOf*/, std::shared_ptr<Vertex> to) {
std::shared_ptr<DirectedHyperEdge> newEdge = edge->getData();
std::shared_ptr<Vertex> from = newEdge->getHead();
newEdge->setHead(to);
headOf(to)->push_front(newEdge);
increaseInDegree(to);
decreaseInDegree(from);
headOf(from)->deleteNode(edge);
}
std::vector<bool> M_compHyperGraph::getSameComponentVector(std::shared_ptr<Vertex> v) {
/*
Running time is O(|V|) by Dissertation, Lemma 8.2
*/
std::vector<bool> c_v(getNumberOfVertices(), false);
for (std::shared_ptr<HyperEdge> undHyperEdge : undirectedHyperEdges) {
if (undHyperEdge->isStillExistsing() && !isTrivial(undHyperEdge)) {
// no need for already deleted or trivial M-components
bool isVIn = false;
for (std::shared_ptr<Vertex> vertex : undHyperEdge->getVertices()) {
if (*vertex == *v) {
isVIn = true;
break;
}
}
if (isVIn) {
for (std::shared_ptr<Vertex> vertex : undHyperEdge->getVertices()) {
c_v[vertex->getId()] = true;
}
}
}
}
return c_v;
}
bool M_compHyperGraph::DFS(std::shared_ptr<Vertex> v1, std::shared_ptr<Vertex> v2,
std::vector<bool>& vertexUsedInDFS, std::vector<bool>& hyperEdgeUsedInDFS) {
std::queue<std::shared_ptr<Vertex> > Q;
Q.push(v1);
vertexUsedInDFS[v1->getId()] = true;
Q.push(v2);
vertexUsedInDFS[v2->getId()] = true;
while (!Q.empty()) {
std::shared_ptr<Vertex> actualVertex = Q.front();
Q.pop();
// Dissertation, Algorithm 8.3 is executed here
if (!(*actualVertex == *v1 || *actualVertex == *v2) &&
getInDegree(actualVertex) < k) { // actual vertex is correct, so
// turn around and return
std::shared_ptr<Vertex> v = actualVertex;
do {
Node<std::shared_ptr<DirectedHyperEdge> >* comeFrom = getIncomingHyperedge(actualVertex);
v = comeFrom->getData()->getHead();
changeDirection(comeFrom, actualVertex);
actualVertex = v;
} while ( !((*actualVertex == *v1) || (*actualVertex == *v2)) );
return true;
} else {
Node<std::shared_ptr<DirectedHyperEdge> >* node = headOf(actualVertex)->getFirst();
while (node != NULL) {
std::shared_ptr<DirectedHyperEdge> dirEdge = node->getData();
if (!hyperEdgeUsedInDFS[dirEdge->getHyperEdge()->getId()]) {
// This can be used for transverse back
hyperEdgeUsedInDFS[dirEdge->getHyperEdge()->getId()] = true;
std::vector<std::shared_ptr<Vertex> > edgeVertices = dirEdge->getHyperEdge()->getVertices();
for (std::shared_ptr<Vertex> newVert : edgeVertices) {
if (!vertexUsedInDFS[newVert->getId()]) {
vertexUsedInDFS[newVert->getId()] = true;
setIncomingHyperedge(newVert, node);
Q.push(newVert);
}
}
}
node = node->getNext();
}
}
}
return false;
}
std::vector<std::shared_ptr<Vertex> > M_compHyperGraph::getTHyperEdges(
std::shared_ptr<Vertex> v1, std::shared_ptr<Vertex> v2, std::vector<bool>& hyperedgeUsedInDFS) {
std::vector<std::shared_ptr<Vertex> > T(0);
int maxSumDegree = 2 * k - ell - 1;
std::vector<bool> vertexUsedInDFS;
bool hasEdgeToChange;
do {
vertexUsedInDFS = std::vector<bool>(getNumberOfVertices(), false);
hyperedgeUsedInDFS = std::vector<bool>(undirectedHyperEdges.size(), false); // O(n)
hasEdgeToChange = DFS(v1, v2, vertexUsedInDFS, hyperedgeUsedInDFS);
} while ((getInDegree(v1) + getInDegree(v2) > maxSumDegree) && hasEdgeToChange);
if (getInDegree(v1) + getInDegree(v2) <= maxSumDegree) {
return T;
} else {
for (auto& v : vertices) {
if (vertexUsedInDFS[v->getId()]) {
T.push_back(v);
}
}
}
return T;
}
void M_compHyperGraph::MakeMCompHypergraph(SimpleGraph& G) {
std::cout << "Vertices processed for M-comp hypergraph:" << std::endl;
if (G.getNumberOfEdges() != 0) {
SimpleGraph Gprime(G.getNumberOfNodes()); // graph of the already used edges
int deletedHyperEdgeNumber = 0;
const double rearrangeRatio = 10; // if more than this is non-existing edges, we delete those
for (int i = 0; i < G.getNumberOfNodes(); i++) {
// Progress bar
std::cout << "[";
int barWidth = 70;
float progress = static_cast<float>(i) / G.getNumberOfNodes();
int pos = barWidth * progress;
for (int i = 0; i < barWidth; ++i) {
if (i < pos) std::cout << "=";
else if (i == pos) std::cout << ">";
else
std::cout << " ";
}
std::cout << "] " << int((progress + 0.003) * 100.0) << " %\r";
std::cout.flush();
//-------------------------------------
// rearrange undirected hyperedges
if (deletedHyperEdgeNumber > undirectedHyperEdges.size() * rearrangeRatio) {
std::vector<std::shared_ptr<HyperEdge> > newUndirected;
std::vector<bool> newTrivial;
for (auto& hyperedge : undirectedHyperEdges) {
if (hyperedge->isStillExistsing()) {
newTrivial.push_back(isTrivial(hyperedge));
newUndirected.push_back(hyperedge);
newUndirected.back()->setId(newUndirected.size()-1);
}
}
trivial = newTrivial;
undirectedHyperEdges = newUndirected;
deletedHyperEdgeNumber = 0;
}
std::shared_ptr<Vertex> v = getVertex(i);
std::vector<bool> inTheSameM_componentWith_i = getSameComponentVector(v); // c_i in the dissertation
std::vector<int> neighborIds = G.getNeighbors(v->getId());
for (int neighborId : neighborIds) {
std::shared_ptr<Vertex> neighbor = getVertex(neighborId);
if (v->getId() < neighbor->getId()) { // not to add two times
// Gprime is jut a check, it could be deleted for faster run
Gprime.addEdge(v->getId(), neighbor->getId());
if (inTheSameM_componentWith_i[neighbor->getId()])
continue; // in this case, no action is needed
std::vector<bool> usedHyperEdge;
std::vector<std::shared_ptr<Vertex> > T = getTHyperEdges(v, neighbor, usedHyperEdge);
if (T.empty()) { // you can add one edge
std::shared_ptr<HyperEdge> newHyperEdge =
makeNewHyperEdge(std::vector<std::shared_ptr<Vertex> >({v, neighbor}));
// this is a new edge, that is trivial
SpanningGraph.addEdge(v->getId(), neighbor->getId());
if (getInDegree(v) < getInDegree(neighbor)) {
addHyperEdge(newHyperEdge, v);
} else {
addHyperEdge(newHyperEdge, neighbor);
}
trivial.push_back(true);
continue;
} else {
std::shared_ptr<HyperEdge> newHyperEdge = makeNewHyperEdge(T);
undirectedHyperEdges.push_back(newHyperEdge);
trivial.push_back(false);
// non-trivial new edge
for (auto& dirHyperEdge : directedHyperEdges) {
if (usedHyperEdge[dirHyperEdge->getHyperEdge()->getId()]) {
deletedHyperEdgeNumber++;
dirHyperEdge->changeUnderlyingEdge(newHyperEdge);
}
}
}
}
}
}
}
}