-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGAN.py
75 lines (65 loc) · 2 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Author:
Md Mijanur Rahman
"""
import torch
import torch.nn as nn
#Generator: G(z)
class Generator(nn.Module):
def __init__(self, noise_dim: int, image_dim: int)->torch.Tensor:
super(Generator, self).__init__()
"""
args:
noise_dim: dimension of noise vector, z, e.g. 100
image_dim: dimension of image, x, e.g. 28*28 = 784 for MNIST
return:
return a tensor of image
"""
self.seq = nn.Sequential(
nn.Linear(noise_dim, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1024),
nn.LeakyReLU(0.2),
nn.Linear(1024, image_dim),
nn.Tanh()
)
def forward(self, x: torch.Tensor)->torch.Tensor:
"""
x: noise vector
"""
return self.seq(x)
#Discriminator: D(x)
class Discriminator(nn.Module):
def __init__(self, image_dim: int)->torch.Tensor:
super(Discriminator, self).__init__()
"""
args:
image_dim: dimension of image, x, e.g. 28*28 = 784 for MNIST
return:
return a tensor of image
"""
self.seq = nn.Sequential(
nn.Linear(image_dim, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, x: torch.Tensor)->torch.Tensor:
return self.seq(x)
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# parameters
image_dim = 28 * 28 * 1
noise_dim = 100
# check the generator and discriminator
generator = Generator(noise_dim, image_dim).to(device)
discriminator = Discriminator(image_dim).to(device)
noise = torch.randn(64, noise_dim).to(device)
gen_out = generator(noise)
disc_out = discriminator(gen_out)
print(gen_out.shape)
print(disc_out.shape)