-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_CSAKD_Large_band6.py
435 lines (319 loc) · 18.2 KB
/
train_CSAKD_Large_band6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os, argparse, glob, time, cv2, pdb, torch, tqdm, models
from PIL import Image
import numpy as np
import torch.nn as nn
import torch.optim as optim
import random as rn
from scipy.io import savemat, loadmat
from utils import *
from dataset import *
from math import acos, degrees
from trainOps import *
from torch.utils.tensorboard import SummaryWriter
# from models.dcsn3d import DCSNMain as DCSN
from models.KQD_Large import Teacher , Student
torch.backends.cudnn.benchmark=True
torch.set_float32_matmul_precision('high')
def parse_args():
parser = argparse.ArgumentParser(description='Train Convex-Optimization-Aware SR net')
parser.add_argument('--SEED', type=int, default=1029)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--epochs', type=int, default=640)
parser.add_argument('--lr_scheduler', type=str, default="cosine")
parser.add_argument('--resume_ind', type=int, default=600)
parser.add_argument('--resume_ckpt', type=str, default="KD_4bn_Band4_LARGE_8866_2444")
parser.add_argument('--snr', type=int, default=35)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--step_size', type=int, default=100)
parser.add_argument('--workers', type=int, default=4)
parser.add_argument('--eval_step', type=int, default=2)
parser.add_argument('--finetuning_step', type=int, default=300, help='Works only if the mixed_align_opt is on')
parser.add_argument('--weight_decay', type=float, default=0, help='Weight decay rate, 0 means training without weight decay')
parser.add_argument('--joint_loss', type=int, default=1)
parser.add_argument('--adaptive_fuse', type=int, default=3)
parser.add_argument('--student_layers', type=list, default=[2,4,4,4])
## Data generator configuration
parser.add_argument('--crop_size', type=int, default=128)
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--bands', type=int, default=172)
parser.add_argument('--msi_bands', type=int, default=4)
parser.add_argument('--mis_pix', type=int, default=0)
parser.add_argument('--mixed_align_opt', type=int, default=0)
# Network architecture configuration
parser.add_argument("--network_mode", type=int, default=1, help="Training network mode: 0) Single mode, 1) LRHSI+HRMSI, 2) COCNN (LRHSI+HRMSI+CO), Default: 2")
parser.add_argument('--num_base_chs', type=int, default=86, help='The number of the channels of the base feature')
parser.add_argument('--num_blocks', type=int, default=6, help='The number of the repeated blocks in backbone')
parser.add_argument('--num_agg_feat', type=int, default=172//4, help='the additive feature maps in the block')
parser.add_argument('--groups', type=int, default=1, help="light version the group value can be >1, groups=1 for full COCNN version, groups=4 is COCNN-Light for 4 HRMSI version")
# Others
parser.add_argument("--root", type=str, default="../../Fusion_data", help='data root folder')
# parser.add_argument("--root", type=str, default="/work/u5088463/Data", help='data root folder')
parser.add_argument("--val_file", type=str, default="./val.txt")
parser.add_argument("--train_file", type=str, default="./train.txt")
parser.add_argument("--prefix", type=str, default="KD_4bn_Band4_LARGE_8866_2444")
parser.add_argument("--device", type=str, default="cuda:0", help="cuda:device_id or cpu")
parser.add_argument("--DEBUG", type=bool, default=False)
parser.add_argument("--gpus", type=int, default=1)
args = parser.parse_args()
args.student_layers = list(map(int, args.student_layers))
return args
def trainer(args):
# ===============Prepare Data===============
flist = loadTxt(args.train_file)
valfn = loadTxt(args.val_file)
print(f'#training samples is {len(flist)} and validation samples is {len(valfn)}')
writer = SummaryWriter(f'runs/exp-{args.prefix}')
dataset = dataset_joint
#print('Use pairwise (LRHSI+HRMSI) dataset')
train_loader = torch.utils.data.DataLoader(dataset(flist, args), batch_size=args.batch_size, shuffle=True, pin_memory=False, num_workers=args.workers)
val_loader = torch.utils.data.DataLoader(dataset(valfn, args, mode='val'), batch_size=args.batch_size, shuffle=False, pin_memory=False, num_workers=args.workers)
model_t = Teacher(args).to(args.device)
model = Student(args).to(args.device)
model = torch.compile(model)
model_t = torch.compile(model_t)
if args.resume_ind>0 or os.path.isfile(args.resume_ckpt):
if not os.path.isfile(args.resume_ckpt):
args.resume_ckpt = os.path.join('teacher_checkpoint', args.prefix, 'best.pth')
resume_ckpt = os.path.join('student_checkpoint', args.prefix, 'last.pth')
if not os.path.isfile(args.resume_ckpt):
print(f"checkpoint is not found at {args.resume_ckpt}")
raise
state_dict = torch.load(resume_ckpt)
model.load_state_dict(state_dict)
state_dict = torch.load(args.resume_ckpt)
model_t.load_state_dict(state_dict)
print(f'Loading the pretrained model from {args.resume_ckpt}')
model_t.train()
model.train()
optimizer_t = optim.AdamW(model_t.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if args.lr_scheduler=='cosine':
scheduler_t = optim.lr_scheduler.CosineAnnealingLR(optimizer_t, args.epochs-args.resume_ind, eta_min=1e-10, last_epoch=-1, verbose=False)
else:
scheduler_t = optim.lr_scheduler.StepLR(optimizer_t, step_size=args.step_size, gamma=0.92)
# scheduler_t = optim.lr_scheduler.ExponentialLR(optimizer_t, gamma=0.9)
optimizer_s = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.StepLR(optimizer_s, step_size=args.step_size, gamma=0.9) # 0.0001*0.9^11 = 0.000031(epoch = 30*11=330)
L1Loss = torch.nn.SmoothL1Loss()
bceloss = torch.nn.BCEWithLogitsLoss()
if not os.path.isdir('teacher_checkpoint'):
os.mkdir('teacher_checkpoint')
if not os.path.isdir(f'teacher_checkpoint/{args.prefix}'):
os.mkdir(f'teacher_checkpoint/{args.prefix}')
if not os.path.isdir('teacher_Rec'):
os.mkdir('teacher_Rec')
if not os.path.isdir(f'teacher_Rec/{args.prefix}'):
os.mkdir(f'teacher_Rec/{args.prefix}')
if not os.path.isdir('student_checkpoint'):
os.mkdir('student_checkpoint')
if not os.path.isdir(f'student_checkpoint/{args.prefix}'):
os.mkdir(f'student_checkpoint/{args.prefix}')
if not os.path.isdir('student_Rec'):
os.mkdir('student_Rec')
if not os.path.isdir(f'student_Rec/{args.prefix}'):
os.mkdir(f'student_Rec/{args.prefix}')
resume_ind = args.resume_ind if args.resume_ind>0 else 0
step = resume_ind
best_sam = 99
best_sam_s = 99
iteration = resume_ind*len(train_loader)
bploss = BPLoss()
samloss = SAMLoss()
for epoch in range(resume_ind, args.epochs):
model_t.train()
model.train()
ep_loss = 0.
ep_loss_s = 0.
running_loss_T, running_sam_T, running_bws_T=[],[],[]
running_loss, running_sam, running_bws=[],[],[]
# optim_time = time.perf_counter()
# optim_time_s = time.perf_counter()
total_optim_time = 0
total_optim_time_s = 0
for batch_idx, (X) in enumerate(train_loader):
iteration +=1
#===================================Teacher Training===================================
t1 = time.perf_counter()
optim_time = time.perf_counter()
t2 = time.perf_counter()-t1
if args.DEBUG:
print(f'Sampling time: {t2} seconds')
t1 = time.perf_counter()
# x2 = lrhsi , x3 = hrmsi , y = GT
x3,x2,y,_,_,_ = X
x2 = x2.to(args.device)
x3 = x3.to(args.device)
optimizer_t.zero_grad()
#x = x.to(args.device)
y = y.to(args.device)
if args.DEBUG:
print(f'To cuda tensor time {time.perf_counter()-t1} seconds')
t1 = time.perf_counter()
co_decoded, cofeat = model_t(LRHSI=x2, HRMSI=x3)
if args.DEBUG:
print(f'model inference time{time.perf_counter()-t1} seconds')
loss_t = L1Loss(co_decoded, y)
loss2_t = samloss(co_decoded, y)
loss3_t = BandWiseMSE(co_decoded, y)
if torch.isnan(loss2_t):
print('It is unnecessary to optimize teacher anymore...abort the process')
break
if args.joint_loss==1:
teacher_loss = loss_t + 0.1*loss2_t+ 0.1*loss3_t
writer.add_scalar('train/loss_t', loss_t.item(), iteration)
writer.add_scalar('train/loss2_t', loss2_t.item(), iteration)
writer.add_scalar('train/loss3_t', loss3_t.item(), iteration)
else:
teacher_loss = loss_t
t1 = time.perf_counter()
teacher_loss.backward(retain_graph=True)
if args.DEBUG:
print(f'Backward time {time.perf_counter()-t1} seconds')
# if teacher_loss != teacher_loss :
# raise Exception('Nan in loss , crack!')
optimizer_t.step()
running_loss_T.append(loss_t.item())
running_sam_T.append(loss2_t.item())
running_bws_T.append(loss3_t.item())
optim_time = time.perf_counter()-optim_time
total_optim_time = total_optim_time + optim_time
#===================================Student Training====================================
t1 = time.perf_counter()
optim_time_s = time.perf_counter()
x = co_decoded.detach()
optimizer_s.zero_grad() #將所有參數的梯度緩衝區(buffer)歸零
x = x.to(args.device)
t1 = time.perf_counter()
decoded, cofeat_s = model(LRHSI=x2, HRMSI=x3)
if args.DEBUG:
print(f'model inference time{time.perf_counter()-t1} seconds')
loss_s = L1Loss(decoded, y) # L1(Student Output , GT)
lossST = L1Loss(decoded, x) # L1(Student Output , Teacher Output)
loss2_s = samloss(decoded, y)
loss3_s = BandWiseMSE(decoded,y)
loss_cofeat = bceloss(cofeat_s, torch.sigmoid( cofeat.detach()))
if torch.isnan(loss2_s):
print('It is unnecessary to optimize student anymore...abort the process')
break
if args.joint_loss==1:
student_loss = loss_s + 0.1*lossST + 0.1*loss_cofeat + 0.1*loss3_s + 0.1*loss2_s
writer.add_scalar('train/loss_s', loss_s.item(), iteration)
writer.add_scalar('train/loss2_s', loss2_s.item(), iteration)
writer.add_scalar('train/loss3_s', loss3_s.item(), iteration)
writer.add_scalar('train/lossST',lossST.item(), iteration)
writer.add_scalar('train/loss_cofeat', loss_cofeat.item(), iteration)
else:
student_loss = loss_s
# student_loss = (1-a) * loss_s + a * lossST
#
t1 = time.perf_counter()
student_loss.backward() #開始進行反向傳播
if args.DEBUG:
print(f'Backward time {time.perf_counter()-t1} seconds')
optimizer_s.step() #更新權重
running_loss.append(loss_s.item())
running_sam.append(loss2_s.item())
running_bws.append(loss3_s.item())
optim_time_s = time.perf_counter()-optim_time_s
total_optim_time_s = total_optim_time_s + optim_time_s
if torch.isnan(loss2_t):
break
if torch.isnan(loss2_s):
break
scheduler_t.step()
scheduler.step()
#
if epoch% args.eval_step ==0:
model_t.eval()
model.eval()
with torch.no_grad():
rmses, sams, fnames, psnrs, ergas = [], [], [], [], []
rmses_s, sams_s, fnames_s, psnrs_s, ergas_s = [], [], [], [], []
ep = 0
ep_s = 0
for ind2, X in enumerate(val_loader):
if ind2 % 5 !=0:
continue
#===================================Teacher Val===================================
(vx3, vx2, vy, vfn, maxv, minv) = X
vx2=vx2.to(args.device)
vx3=vx3.to(args.device)
vy = vy.cpu().numpy()
vy = vy[:,:,:args.image_size,:args.image_size]
#vx=vx.to(args.device)
maxv, minv = maxv.cpu().numpy(), minv.cpu().numpy()
start_time = time.time()
val_dec, _ = model_t(LRHSI=vx2, HRMSI=vx3, mode=1)
ep = ep+(time.time()-start_time)
vx = val_dec.detach()
val_dec = val_dec.cpu().numpy()
for predimg, gtimg,f, v1, v2 in zip(val_dec, vy, vfn, maxv, minv):
predimg = (predimg/2+0.5)
gtimg = (gtimg/2+0.5)
sams.append(sam2(predimg, gtimg))
psnrs.append(psnr(predimg, gtimg))
ergas.append(ERGAS(predimg, gtimg))
predimg = predimg * (v1-v2) + v2
gtimg = gtimg * (v1-v2) + v2
rmses.append(rmse(predimg, gtimg))
# savemat(f'teacher_Rec/{args.prefix}/{os.path.basename(f)}.mat', {'pred':np.transpose(predimg,(1,2,0))})
#===================================Student Val===================================
vx = vx.to(args.device)
start_time = time.time()
val_dec_s, _ = model(LRHSI=vx2, HRMSI=vx3, mode=1)
ep_s = ep_s + (time.time()-start_time)
val_dec_s = val_dec_s.cpu().numpy()
for predimg_s, gtimg_s,f, v1, v2 in zip(val_dec_s, vy, vfn, maxv, minv):
predimg_s = (predimg_s/2+0.5)
gtimg_s = (gtimg_s/2+0.5)
sams_s.append(sam2(predimg_s, gtimg_s))
psnrs_s.append(psnr(predimg_s, gtimg_s))
ergas_s.append(ERGAS(predimg_s, gtimg_s))
predimg_s = predimg_s * (v1-v2) + v2
gtimg_s = gtimg_s * (v1-v2) + v2
rmses_s.append(rmse(predimg_s, gtimg_s))
# savemat(f'student_Rec/{args.prefix}/{os.path.basename(f)}.mat', {'pred':np.transpose(predimg_s,(1,2,0))})
ep = ep / len(sams)
ep_s = ep_s / len(sams_s)
print('T : [epoch: %d] Loss: %.3f, Loss-SAM: %.3f, Loss-BWS: %.3f, val-rmse: %.3f, val-SAM: %.3f, val-PSNR: %.3f, val-ERGAS: %.3f, Inference time: %f ms, Optim time: %f, lr: %f' % (epoch, 100*np.mean(running_loss_T), np.mean(running_sam_T), np.mean(running_bws_T), np.mean(rmses), np.mean(sams), np.mean(psnrs), np.mean(ergas), ep*1000, total_optim_time, scheduler_t.get_last_lr()[0]))
print('S : [epoch: %d] Loss: %.3f, Loss-SAM: %.3f, Loss-BWS: %.3f, val-rmse: %.3f, val-SAM: %.3f, val-PSNR: %.3f, val-ERGAS: %.3f, Inference time: %f ms, Optim time: %f, lr: %f' % (epoch, 100*np.mean(running_loss), np.mean(running_sam), np.mean(running_bws), np.mean(rmses_s), np.mean(sams_s), np.mean(psnrs_s), np.mean(ergas_s), ep_s*1000, total_optim_time_s, scheduler.get_last_lr()[0]))
print(' ')
writer.add_scalar('val/RMSE_T', np.mean(rmses), iteration)
writer.add_scalar('val/SAM_T', np.mean(sams), iteration)
writer.add_scalar('val/PSNR_T', np.mean(psnrs), iteration)
writer.add_scalar('val/ERGAS_T', np.mean(ergas), iteration)
writer.add_scalar('val/RMSE_S', np.mean(rmses_s), iteration)
writer.add_scalar('val/SAM_S', np.mean(sams_s), iteration)
writer.add_scalar('val/PSNR_S', np.mean(psnrs_s), iteration)
writer.add_scalar('val/ERGAS_S', np.mean(ergas_s), iteration)
model_t.train()
model.train()
if best_sam > np.mean(sams):
best_sam = np.mean(sams)
torch.save(model_t.state_dict(), f'teacher_checkpoint/{args.prefix}/best.pth')
ep_loss = ep_loss + np.mean(running_loss_T)
running_loss_T, running_sam_T, running_bws_T=[],[], []
if best_sam_s > np.mean(sams_s):
best_sam_s = np.mean(sams_s)
torch.save(model.state_dict(), f'student_checkpoint/{args.prefix}/best.pth')
ep_loss_s = ep_loss_s + np.mean(running_loss)
running_loss, running_sam, running_bws=[],[], []
model_t.train()
model.train()
torch.save(model_t.state_dict(), f'teacher_checkpoint/{args.prefix}/last.pth')
torch.save(model.state_dict(), f'student_checkpoint/{args.prefix}/last.pth')
step = step + 1
if __name__ == '__main__':
args = parse_args()
torch.manual_seed(args.SEED)
rn.seed(args.SEED)
np.random.seed(args.SEED)
## Reading files
print("#"*80)
for arg in vars(args):
print(f"{arg}: {getattr(args, arg)}")
print("#"*80)
print('start training')
print("#"*80)
trainer(args)
print("#"*80)
print('finish')