-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnp_4_2.py
1177 lines (1090 loc) · 42.4 KB
/
np_4_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding: utf-8
import numpy as np # linear algebra
import scipy.signal as sig
import scipy.fftpack as ffts
from pykalman import KalmanFilter
from scipy.linalg import hankel, svd
import pywt
import ewtpy
import emd
class statistic_:
def __init__(self, data):
# 二维数组,使用第一维分组
self.data = np.array(data)
def get_max(self):
# 最大值
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(max(v))
return np.array(pool)
else:
# 向量
return max(self.data)
else:
# 矩形矩阵
return self.data.max(-1)
def get_min(self):
# 最小值
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(min(v))
return np.array(pool)
else:
# 向量
return min(self.data)
else:
# 矩形矩阵
return self.data.min(-1)
def get_avg(self):
# 均值
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(np.mean(v))
return np.array(pool)
else:
# 向量
return np.mean(self.data)
else:
# 矩形矩阵
return np.mean(self.data, axis=-1)
def get_mid(self):
# 中位数
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(np.median(v))
return np.array(pool)
else:
# 向量
return np.median(self.data)
else:
# 矩形矩阵
return np.median(self.data, axis=-1)
def get_len(self):
# 计数
# 返回 tuple 存储矩形矩阵尺寸, numpy.ndarray 存储锯齿矩阵每组数据长度
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(len(v))
return np.array(pool)
else:
# 向量
return np.shape(self.data)
else:
# 矩形矩阵
return np.shape(self.data)
def get_sum(self):
# 求和
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(sum(v))
return np.array(pool)
else:
# 向量
return np.sum(self.data)
else:
# 矩形矩阵
return np.sum(self.data, axis=-1)
def get_cup(self):
# 组数据求积
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(np.cumprod(v)[-1])
return np.array(pool)
else:
# 向量
return np.cumprod(self.data)[-1]
else:
# 矩形矩阵
return np.cumprod(self.data, axis=-1)[:, -1]
def get_var(self):
# 方差
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(np.var(v))
return np.array(pool)
else:
# 向量
return np.var(self.data)
else:
# 矩形矩阵
return np.var(self.data, axis=-1)
def get_std(self):
# 标准差
return np.sqrt(self.get_var())
def get_mnt(self, order=3):
# 3阶以上标准中心距
# order 阶次,取自然数
# 3阶 偏度
# 4阶 峰度(峭度)
# 5阶 超偏度
# 6阶 超尾度
data_avg = self.get_avg()
data_std = self.get_std()
data_len = self.get_len() # 锯齿数组和矩形数组 data_len 的格式不同
if order == 0:
return self.get_sum()
elif order == 1:
return data_avg
elif order == 2:
return data_std**2
else:
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for i, v in enumerate(self.data):
pool.append(
sum((v - data_avg[i]) ** order)
/ (data_len[i] * data_std[i] ** order)
)
return np.array(pool)
else:
# 向量
return sum((self.data - data_avg) ** order) / data_len
else:
# 矩形矩阵
pool = []
for i, v in enumerate(self.data):
# 锯齿数组和矩形数组 data_len 的格式不同
pool.append(
sum((v - data_avg[i]) ** order)
/ (data_len[1] * data_std[i] ** order)
)
return np.array(pool)
def get_pp(self):
# 峰峰值
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(max(v) - min(v))
return np.array(pool)
else:
# 向量
return np.max(self.data) - np.min(self.data)
else:
# 矩形矩阵
return np.max(self.data, axis=-1) - np.min(self.data, axis=-1)
def get_ppc(self):
# (皮尔逊)相关系数
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
# 变量数不相等,不具有一一对应关系
return None
else:
return np.corrcoef(self.data)
def get_qtl(self, interval=10):
# 计算分位点
# interval 为区间数
data_len = self.get_len() # 锯齿数组和矩形数组 data_len 的格式不同
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
pool = []
for i, v in enumerate(self.data):
# 锯齿数组和矩形数组 data_len 的格式不同
quantiles = np.linspace(0, 1, interval + 1) * data_len[i]
quantiles[-1] = -1
quantiles = quantiles.astype(np.int64)
pool.append(np.sort(np.array(v))[quantiles])
return np.array(pool)
else:
# 向量
quantiles = np.linspace(0, 1, interval + 1) * data_len
quantiles[-1] = -1
quantiles = quantiles.astype(np.int64)
return np.sort(self.data)[quantiles]
else:
# 矩形矩阵
pool = []
for v in self.data:
# 锯齿数组和矩形数组 data_len 的格式不同
quantiles = np.linspace(0, 1, interval + 1) * data_len[1]
quantiles[-1] = -1
quantiles = quantiles.astype(np.int64)
pool.append(np.sort(v)[quantiles])
return np.array(pool)
class time_dom_:
def __init__(self, data):
# 二维数组,使用第一维分组
self.data = np.array(data)
# 锯齿数组和矩形数组 data_len 的格式不同
self.len = statistic_(self.data).get_len()
# 判断数据形状
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
self.mtx_type = 2
else:
# 向量
self.mtx_type = 0
else:
# 矩形矩阵
self.mtx_type = 1
def mul_win(self, win_name="hamming", std=0.65):
# 加窗分析
# win_name 为窗类型 \
# 包含 'hamming', 'hann', 'triang', 'boxcar', 'gaussian'等 \
# 对应 汉明窗,汉宁窗,三角窗,矩形窗,高斯窗等
# 调用 高斯窗 时需要传递方差 std 参数
if self.mtx_type == 0:
# 向量
if win_name == "gaussian":
y = sig.get_window((win_name, std), self.len[0])
else:
y = sig.get_window(win_name, self.len[0])
return np.multiply(self.data, y)
if self.mtx_type == 1:
# 矩形矩阵
if win_name == "gaussian":
y = sig.get_window((win_name, std), self.len[1])
else:
y = sig.get_window(win_name, self.len[1])
return np.multiply(self.data, y)
if self.mtx_type == 2:
# 锯齿矩阵
pool = []
for i, v in enumerate(self.data):
if win_name == "gaussian":
y = sig.get_window((win_name, std), self.len[i])
else:
y = sig.get_window(win_name, self.len[i])
pool.append(np.multiply(self.data[i], y))
return np.array(pool, dtype=object)
def spt_frm(self, fame_len, overlap_rate=0, drop_last=1):
# 信号分帧
# fame_len 为每帧长度
# overlap_rate 为重叠率,代表每帧与前一帧重叠度,小于1
# drop_last 为是否补0保留真实长度不够一帧长度的最后一批数据
if self.mtx_type == 0:
# 向量
start = 0
end = start + fame_len
pool = []
while start < self.len[0]:
if end <= self.len[0]:
pool.append(self.data[start:end])
else:
if drop_last:
pool.append(
np.pad(
self.data[start:],
(0, fame_len - len(self.data[start:])),
)
)
break
else:
break
start = start + int(np.ceil(fame_len * (1 - overlap_rate)))
end = start + fame_len
return np.array(pool)
if self.mtx_type == 1:
# 矩形矩阵
pool_1 = []
for v in self.data:
start = 0
end = start + fame_len
pool = []
while start < self.len[1]:
if end <= self.len[1]:
pool.append(v[start:end])
else:
if drop_last:
pool.append(
np.pad(v[start:], (0, fame_len - len(v[start:])))
)
break
else:
break
start = start + int(np.ceil(fame_len * (1 - overlap_rate)))
end = start + fame_len
pool_1.append(pool)
return np.array(pool_1)
if self.mtx_type == 2:
# 锯齿矩阵
pool_1 = []
# 锯齿数组和矩形数组 data_len 的格式不同
for i, v in enumerate(self.data):
start = 0
end = start + fame_len
pool = []
while start < self.len[i]:
if end <= self.len[i]:
pool.append(v[start:end])
else:
if drop_last:
pool.append(
np.pad(v[start:], (0, fame_len - len(v[start:])))
)
break
else:
break
start = start + int(np.ceil(fame_len * (1 - overlap_rate)))
end = start + fame_len
pool_1.append(pool)
return np.array(pool_1)
def sld_avg(self, scale=4):
# 滑动平均
if self.mtx_type == 0:
# 向量
start = 0
end = start + scale
pool = []
while start < self.len[0]:
if end <= self.len[0]:
pool.append(np.mean(self.data[start:end]))
else:
break
start = start + 1
end = start + scale
return np.array(pool)
if self.mtx_type == 1:
# 矩形矩阵
pool_1 = []
for v in self.data:
start = 0
end = start + scale
pool = []
while start < self.len[1]:
if end <= self.len[1]:
pool.append(np.mean(v[start:end]))
else:
break
start = start + 1
end = start + scale
pool_1.append(pool)
return np.array(pool_1)
if self.mtx_type == 2:
# 锯齿矩阵
pool_1 = []
# 锯齿数组和矩形数组 data_len 的格式不同
for i, v in enumerate(self.data):
start = 0
end = start + scale
pool = []
while start < self.len[i]:
if end <= self.len[i]:
pool.append(np.mean(v[start:end]))
else:
break
start = start + 1
end = start + scale
pool_1.append(pool)
return np.array(pool_1)
def get_cov(self, cov_with, mode="same"):
# 卷积
# mode 指定输出方式 \
# 'full’完全离散线性卷积 \
# 'valid’输出仅包含那些不依赖于零填充的元素 \
# 'same’输出与in1的大小相同,以‘full’输出为中心
if self.mtx_type == 0:
# 向量
return sig.convolve(in1=self.data, in2=cov_with, mode=mode)
if self.mtx_type in (1, 2):
# 矩形矩阵,锯齿矩阵
pool = []
for v in self.data:
pool.append(sig.convolve(in1=v, in2=cov_with, mode=mode))
return np.array(pool)
def up_samp(self, ins_rate=1, mode="zero"):
# 升采样
# ins_rate 增加的采样倍数
# mode 插值方式,'zero' 零插值,'linear' 线性插值,'ffill' 用前一个值填充,'bfill' 用后一个值填充
if self.mtx_type == 0:
# 向量
pool = []
for i in range(self.len[0] - 1):
pool.append(self.data[i])
if mode == "zero":
pool.extend(np.zeros(ins_rate))
continue
if mode == "linear":
pool.extend(
np.linspace(self.data[i], self.data[i + 1], ins_rate + 2)[1:-1]
)
continue
if mode == "ffill":
pool.extend(np.ones(ins_rate) * self.data[i])
continue
if mode == "bfill":
pool.extend(np.ones(ins_rate) * self.data[i + 1])
pool.append(self.data[-1])
return np.array(pool)
if self.mtx_type == 1:
# 矩形矩阵
pool_1 = []
for v in self.data:
pool = []
for i in range(self.len[1] - 1):
pool.append(v[i])
if mode == "zero":
pool.extend(np.zeros(ins_rate))
continue
if mode == "linear":
pool.extend(np.linspace(v[i], v[i + 1], ins_rate + 2)[1:-1])
continue
if mode == "ffill":
pool.extend(np.ones(ins_rate) * v[i])
continue
if mode == "bfill":
pool.extend(np.ones(ins_rate) * v[i + 1])
pool.append(v[-1])
pool_1.append(pool)
return np.array(pool_1)
if self.mtx_type == 2:
# 锯齿矩阵
pool_1 = []
# 锯齿数组和矩形数组 data_len 的格式不同
for i, v in enumerate(self.data):
pool = []
for i in range(self.len[i] - 1):
pool.append(v[i])
if mode == "zero":
pool.extend(np.zeros(ins_rate))
continue
if mode == "linear":
pool.extend(np.linspace(v[i], v[i + 1], ins_rate + 2)[1:-1])
continue
if mode == "ffill":
pool.extend(np.ones(ins_rate) * v[i])
continue
if mode == "bfill":
pool.extend(np.ones(ins_rate) * v[i + 1])
pool.append(v[-1])
pool_1.append(pool)
return np.array(pool_1)
def down_samp(self, gap=1):
# 降采样
if self.mtx_type == 0:
# 向量
idx = np.arange(0, self.len[0], gap + 1)
return self.data[idx]
if self.mtx_type == 1:
# 矩形矩阵
idx = np.arange(0, self.len[1], gap + 1)
return self.data[:, idx]
if self.mtx_type == 2:
# 锯齿矩阵
pool = []
# 锯齿数组和矩形数组 data_len 的格式不同
for i, v in enumerate(self.data):
idx = np.arange(0, self.len[i], gap + 1)
pool.append(np.array(v)[idx])
return np.array(pool)
def crs_crr(self, target):
"""交叉关联分析(相关度分析)
输入:
target 为比较的目标波形
输出:
corr 为与目标波形的交叉相关系数
lags 为 corr 与目标波形的偏移度
"""
if self.mtx_type == 0:
# 向量
corr = sig.correlate(self.data, target)
lags = sig.correlation_lags(len(target), self.len[0])
return [corr.tolist(), lags.tolist()]
if self.mtx_type == 1:
# 矩形矩阵
corr = sig.correlate(self.data, np.tile(target, (self.len[0], 1)))
lags = sig.correlation_lags(len(target), self.len[1])
return [corr.tolist(), lags.tolist()]
if self.mtx_type == 2:
# 锯齿矩阵
# 锯齿数组和矩形数组 data_len 的格式不同
corr_pool = []
lags_pool = []
for i, v in enumerate(self.data):
corr = sig.correlate(v, target)
lags = sig.correlation_lags(len(target), self.len[i])
corr_pool.append(corr)
lags_pool.append(lags)
return [corr_pool.tolist(), lags_pool.tolist()]
class freq_dom_:
def __init__(self, data):
self.data = np.array(data)
# 锯齿数组和矩形数组 data_len 的格式不同
self.len = statistic_(self.data).get_len()
# 判断数据形状
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
self.mtx_type = 2
else:
# 向量
self.mtx_type = 0
else:
# 矩形矩阵
self.mtx_type = 1
def get_dct(self):
# DCT,离散余弦变换,DCT-II公式
if self.mtx_type in (0, 1):
# 向量和矩形矩阵
return ffts.dct(self.data)
if self.mtx_type == 2:
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(ffts.dct(v))
return np.array(pool, dtype=object)
def get_gabor(self, fs, std=0.65, nperseg=256, noverlap=None):
"""gabor变换(高斯窗短时傅里叶)
输入:
std 高斯窗标准差
fs 采样频率
nperseg 每窗采样点数
noverlap 每窗重叠点数
输出:
f 频率分辨坐标
t 每窗时间坐标
Zxx.real 对应每窗stft变换实值
"""
if self.mtx_type in (0, 1):
# 向量
f, t, Zxx = sig.stft(
self.data,
fs=fs,
window=("gaussian", std),
nperseg=nperseg,
noverlap=noverlap,
)
return [f.tolist(), t.tolist(), Zxx.real.tolist()]
if self.mtx_type == 2:
# 锯齿矩阵
f_pool, t_pool, Zxx_pool = [], [], []
for v in self.data:
f, t, Zxx = sig.stft(
np.array(v),
fs=fs,
window=("gaussian", std),
nperseg=nperseg,
noverlap=noverlap,
)
f_pool.append(list(f))
t_pool.append(list(t))
Zxx_pool.append(list(Zxx.real))
return [f_pool, t_pool, Zxx_pool]
def dig_filt(self, filt_type, fs, fc, filter_od=8):
"""数字滤波
输入:
filt_type 滤波类型 ‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’
fs 采样频率
fc 截止频率,可为 单值 和 二值数组
filter_od 滤波器阶数
"""
if self.mtx_type in (0, 1):
# 向量,矩形矩阵
wn = 2 * np.array(fc) / fs
b, a = sig.butter(filter_od, wn, filt_type)
return sig.filtfilt(b, a, self.data)
if self.mtx_type == 2:
# 锯齿矩阵
wn = 2 * np.array(fc) / fs
b, a = sig.butter(filter_od, wn, filt_type)
pool = []
for v in self.data:
pool.append(list(sig.filtfilt(b, a, v)))
return np.array(pool, dtype=object)
def wie_filt(self):
# 维纳滤波
if self.mtx_type in (0, 1):
# 向量,矩形矩阵
return sig.wiener(self.data)
if self.mtx_type == 2:
# 锯齿矩阵
pool = []
for v in self.data:
pool.append(list(sig.wiener(v)))
return np.array(pool, dtype=object)
def kal_filt(self):
# 卡尔曼滤波
kf = KalmanFilter(n_dim_obs=1)
if self.mtx_type == 0:
# 向量
return np.array(kf.em(self.data).smooth(self.data)[0]).flatten()
if self.mtx_type in (1, 2):
# 矩形矩阵和锯齿矩阵
pool = []
for v in self.data:
pool.append(np.array(kf.em(v).smooth(v)[0]).flatten())
return pool
def LMS(self, xn, dn, M, mu):
"""单通道自适应滤波 (Least Mean Square,LMS)
输入:
xn: 原数据
dn: 目标波
M: 滤波器阶数
mu: 步长因子
输出:
yn: 结果波
en: 结果波与目标波误差
"""
L = len(xn) # 采样点数
en = np.zeros(L)
W = np.zeros((L, M)) # 权重矩阵
for k in range(M - 1, L):
x = np.array(xn[k - M + 1 : k + 1][::-1]) # 逆序
d = np.array(dn[k])
y = np.multiply(W[k - 1], x).sum() # 加权求和滤波
en[k] = d - y
W[k] = np.add(W[k - 1], 2 * mu * en[k] * x) # 求导更新权重
# 求最优时滤波器的输出序列
yn = np.inf * np.ones(len(xn))
for k in range(M - 1, len(xn)):
x = np.array(xn[k - M + 1 : k + 1][::-1])
yn[k] = np.multiply(W[k], x).sum()
return yn, en
def lms_filt(self, dn, M=8, mu=1e-3):
"""自适应滤波 (Least Mean Square,LMS)
输入:
dn: 目标波
M: 滤波器阶数
mu: 步长因子
输出:
yn: 结果波
en: 结果波与目标波误差
"""
if self.mtx_type == 0:
# 向量
yn, en = self.LMS(self.data, dn, M, mu)
return [yn.tolist(), en.tolist()]
if self.mtx_type in (1, 2):
# 矩形矩阵和锯齿矩阵
yn_pool = []
en_pool = []
for v in self.data:
yn, en = self.LMS(v, dn, M, mu)
yn_pool.append(yn.tolist())
en_pool.append(en.tolist())
return [yn_pool, en_pool]
def FFT_HARM(self, data, fs, cut, flag_xd2pi):
"""单通道傅里叶谐波分析
输入:
fs: 采样频率
cut: 主要波强度阈值,0 < cut <= 1
输出:
mf_x: 主要波频率
mf_y: 主要波强度
fft_x: 傅里叶变换频率轴
fft_y: 频率强度
"""
N = len(data)
T = N / fs
y = data
y = y - np.mean(y)
fft_y = np.abs(ffts.fft(np.array(y)))[: int(N / 2)]
fft_y /= max(fft_y)
if flag_xd2pi:
# 直接间隔有倍率 2*np.pi
fft_x = ffts.fftfreq(N, T / N / (2 * np.pi))[: int(N / 2)]
else:
fft_x = ffts.fftfreq(N, T / N)[: int(N / 2)]
# 奈奎斯特定理
fft_y = fft_y[: sum(fft_x < fs / 2.56)]
fft_x = fft_x[: sum(fft_x < fs / 2.56)]
fft_y_sort_idx = np.argsort(fft_y)
idx = fft_y_sort_idx[sum(fft_y <= cut) :]
mf_x = fft_x[idx[::-1]]
mf_y = fft_y[idx[::-1]]
return mf_x, mf_y, fft_x, fft_y
def get_harm(self, fs, cut=0.3, flag_xd2pi=0):
"""傅里叶谐波分析
输入:
fs: 采样频率
cut: 主要波强度阈值,0 < cut <= 1
flag_xd2pi: 是否把频率坐标轴缩小2pi倍
输出:
mf_x: 主要波频率
mf_y: 主要波强度
"""
if self.mtx_type == 0:
# 向量
mf_x, mf_y, _, _ = self.FFT_HARM(self.data, fs, cut, flag_xd2pi)
return [mf_x.tolist(), mf_y.tolist()]
if self.mtx_type in (1, 2):
# 矩形矩阵和锯齿矩阵
mf_x_pool = []
mf_y_pool = []
for v in self.data:
mf_x, mf_y, _, _ = self.FFT_HARM(v, fs, cut, flag_xd2pi)
mf_x_pool.append(mf_x.tolist())
mf_y_pool.append(mf_y.tolist())
return [mf_x_pool, mf_y_pool]
def SVD_DENOI(self, data, ratio):
"""SVD降噪
输入:
ratio:保留的奇异值阶数占数据长度的百分比
"""
H = hankel(data) # 汉克尔矩阵 (Hankel Matrix)
U, S, V = svd(H)
S[round(len(S) * ratio) :] = 0
H_new = U * np.mat(np.diag(S)) * V
return np.array(H_new[0, :])[0]
def denoise(self, method="svd", ratio=0.01, kernel_size=5):
"""降噪,提供两种方式,中值滤波降噪 和 SVD降噪
输入:
method:降噪方式,'med'或者'svd',对应 中值滤波降噪 和 SVD降噪
ratio:'svd'降噪保留的奇异值阶数占数据长度的百分比
kernel_size:'med'降噪的滤波器长度
"""
if self.mtx_type == 0:
if method == "med":
return sig.medfilt(self.data, kernel_size)
else:
return self.SVD_DENOI(self.data, ratio)
if self.mtx_type in (1, 2):
pool = []
for v in self.data:
if method == "med":
pool.append(sig.medfilt(v, kernel_size))
else:
pool.append(self.SVD_DENOI(v, ratio))
return np.array(pool)
def PSD(self, data, fs, method, window, nperseg, noverlap, flag_xd2pi):
"""单通道功率谱(Power Spectral Density)计算,提供两种方式 周期图法 和 多窗谱法
输入:
method:计算方式,'periodogram'或者'welch',对应 周期图法 和 多窗谱法
window:多窗谱法所用窗,可用包含加窗计算算法内的所有窗类型
nperseg:多窗谱法所用窗长度
noverlap:多窗谱法所每窗重叠点数
输出:
f_new:频率轴
Pxx_new:信号功率谱密度
"""
if method == "periodogram":
f, Pxx = sig.periodogram(data, fs)
elif method == "welch":
f, Pxx = sig.welch(
data, fs, window=window, nperseg=nperseg, noverlap=noverlap
)
else:
return None
# 直接间隔有倍率 2*np.pi
if flag_xd2pi:
f = f * 2 * np.pi
# 奈奎斯特定理
f_new = f[: sum(f < fs / 2.56)]
Pxx_new = Pxx[: sum(f < fs / 2.56)]
return f_new, Pxx_new
def get_psd(
self, fs, method="periodogram", window="hann", nperseg=256, noverlap=None, flag_xd2pi=0
):
"""功率谱计算,提供两种方式 周期图法 和 多窗谱法
输入:
method:计算方式,'periodogram'或者'welch',对应 周期图法 和 多窗谱法
window:多窗谱法所用窗,可用包含加窗计算算法内的所有窗类型
nperseg:多窗谱法所用窗长度
noverlap:多窗谱法所每窗重叠点数
输出:
f:频率轴
Pxx:信号功率谱密度
"""
if self.mtx_type == 0:
f, Pxx = self.PSD(self.data, fs, method, window, nperseg, noverlap, flag_xd2pi)
return [f.tolist(), Pxx.tolist()]
if self.mtx_type in (1, 2):
pool_f = []
pool_Pxx = []
for v in self.data:
f, Pxx = self.PSD(v, fs, method, window, nperseg, noverlap, flag_xd2pi)
pool_f.append(f.tolist())
pool_Pxx.append(Pxx.tolist())
return [pool_f, pool_Pxx]
class time_freq_dom_:
def __init__(self, data):
self.data = np.array(data)
# 锯齿数组和矩形数组 data_len 的格式不同
self.len = statistic_(self.data).get_len()
# 判断数据形状
if len(np.shape(self.data)) == 1:
if isinstance(self.data[0], list):
# 锯齿矩阵
self.mtx_type = 2
else:
# 向量
self.mtx_type = 0
else:
# 矩形矩阵
self.mtx_type = 1
def WAVPACK(self, data, wavelet, level, mode, order):
"""单通道信号小波包分析
输入:
wavlet:母小波 \
haar : Haar 家族,含 ['haar']
db : Daubechies 家族,含 ['db1', 'db2', 'db3', '...']
sym : Symlets 家族,含 ['sym2', 'sym3', 'sym4', '...']
coif : Coiflets 家族,含 ['coif1', 'coif2', 'coif3', '...']
bior : Biorthogonal 家族,含 ['bior1.1', 'bior1.3', 'bior1.5', '...']
rbio : Reverse biorthogonal 家族,含 ['rbio1.1', 'rbio1.3', 'rbio1.5', '...']
dmey : Discrete Meyer (FIR Approximation) 家族,含 ['dmey']
gaus : Gaussian 家族,含 ['gaus1', 'gaus2', 'gaus3', '...']
mexh : Mexican hat wavelet 家族,含 ['mexh']
morl : Morlet wavelet 家族,含 ['morl']
cgau : Complex Gaussian wavelets 家族,含 ['cgau1', 'cgau2', 'cgau3', '...']
shan : Shannon wavelets 家族,含 ['shan']
fbsp : Frequency B-Spline wavelets 家族,含 ['fbsp']
cmor : Complex Morlet wavelets 家族,含 ['cmor']
level:分析层级,整数,字符'max'表示返回最大层级结果(不推荐)
mode:信号填充方式,'zero', 'constant', 'symmetric', 'periodic', 'smooth', 'periodization', 'reflect', 'antisymmetric', 'antireflect'之一
order:小波包树节点排列方式,'natural'或者'freq',分别对应 树节点顺序 和 频率顺序
输出:
rec_results:单节点小波系数重构结果
coeffs:各节点小波系数,排列方式对应输入的order参数
"""
wp = pywt.WaveletPacket(data=data, wavelet=wavelet, mode=mode)
if level == "max":
level = wp.maxlevel
elif level > wp.maxlevel:
level = wp.maxlevel
node_name_list = [node.path for node in wp.get_level(level=level, order=order)]
rec_results = []
coeffs = []
for i in node_name_list:
new_wp = pywt.WaveletPacket(
data=np.zeros(len(data)), wavelet=wavelet, mode=mode
)
new_wp[i] = wp[i].data
x_i = new_wp.reconstruct(update=True)
rec_results.append(x_i)
coeffs.append(wp[i].data)
return np.array(rec_results), np.array(coeffs)
def get_wavpack(self, wavelet="db4", level=3, mode="symmetric", order="freq"):
"""小波包分析
输入:
wavlet:母小波 \
haar : Haar 家族,含 ['haar']
db : Daubechies 家族,含 ['db1', 'db2', 'db3', '...']
sym : Symlets 家族,含 ['sym2', 'sym3', 'sym4', '...']
coif : Coiflets 家族,含 ['coif1', 'coif2', 'coif3', '...']
bior : Biorthogonal 家族,含 ['bior1.1', 'bior1.3', 'bior1.5', '...']
rbio : Reverse biorthogonal 家族,含 ['rbio1.1', 'rbio1.3', 'rbio1.5', '...']
dmey : Discrete Meyer (FIR Approximation) 家族,含 ['dmey']
gaus : Gaussian 家族,含 ['gaus1', 'gaus2', 'gaus3', '...']
mexh : Mexican hat wavelet 家族,含 ['mexh']
morl : Morlet wavelet 家族,含 ['morl']
cgau : Complex Gaussian wavelets 家族,含 ['cgau1', 'cgau2', 'cgau3', '...']
shan : Shannon wavelets 家族,含 ['shan']
fbsp : Frequency B-Spline wavelets 家族,含 ['fbsp']
cmor : Complex Morlet wavelets 家族,含 ['cmor']
level:分析层级,整数,字符'max'表示返回最大层级结果(不推荐)
mode:信号填充方式,'zero', 'constant', 'symmetric', 'periodic', 'smooth', 'periodization', 'reflect', 'antisymmetric', 'antireflect'之一
order:小波包树节点排列方式,'natural'或者'freq',分别对应 树节点顺序 和 频率顺序
输出:
rec_results:单节点小波系数重构结果
coeffs:各节点小波系数,排列方式对应输入的order参数
"""
if self.mtx_type == 0:
rec_results, coeffs = self.WAVPACK(self.data, wavelet, level, mode, order)
return [rec_results.tolist(), coeffs.tolist()]
if self.mtx_type in (1, 2):
pool_rec_results = []
pool_coeffs = []
for v in self.data:
rec_results, coeffs = self.WAVPACK(v, wavelet, level, mode, order)
pool_rec_results.append(rec_results.tolist())
pool_coeffs.append(coeffs.tolist())
return [pool_rec_results, pool_coeffs]
def get_ewt(
self,
N=5,
log=0,
detect="locmax",
completion=0,
reg="none",
lengthFilter=10,
sigmaFilter=1,