-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmssm.fr
568 lines (518 loc) · 45.5 KB
/
mssm.fr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
(* ********************************************************* *)
(* ***** ***** *)
(* ***** FeynRules model file: the MSSM ***** *)
(* ***** Author: B. Fuks ***** *)
(* ***** ***** *)
(* ********************************************************* *)
(* ************************** *)
(* ***** Information ***** *)
(* ************************** *)
M$ModelName = "MSSM";
M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"fuks@cern.ch"}, Institutions->{"IPHC Strasbourg / University of Strasbourg"},
Date->"26.10.12", Version->"1.3.13",
References->{"C. Duhr, B. Fuks, CPC 182 (2011) 2404-2462, arXiv:1102.4191 [hep-ph]"},
URLs->{"http://feynrules.irmp.ucl.ac.be/view/Main/MSSM"} };
(* v1.3.6: Renaming of SP to SPot (variable name clashing). Thanks to Kentarou Mawatari. *)
(* v1.3.7: Small bug in the definition of the CKM matrix. Thanks Antonio Mariano. *)
(* v1.3.8: Interaction orders added. *)
(* v1.3.9: Wrong sign for the gaugino soft masses. *)
(* v1.3.10: Inversion of two SLHA counters for the Higgs soft masses. Thanks to Sho Iwamoto. *)
(* v1.3.11: Adding the Feynman gauge flag necessary for the UFO. *)
(* v1.3.12: Preamble updated. *)
(* v1.3.13: Definition of bb modified, improving Lagrangian checks. Thanks to Sho Iwamoto. *)
(* ************************** *)
(* ***** Flags ***** *)
(* ************************** *)
$CKMDiag = False; (* CKM = identity or not *)
$MNSDiag = True; (* PMNS = identity or not *)
FeynmanGauge = True;
(* ************************** *)
(* ***** Gauge groups ***** *)
(* ************************** *)
M$GaugeGroups = {
U1Y == { Abelian->True, CouplingConstant->gp, Superfield->BSF, Charge->Y, GUTNormalization->3/5},
SU2L == { Abelian->False, CouplingConstant->gw, Superfield->WSF,
StructureConstant->ep, Representations->{Ta,SU2D}, Definitions->{Ta[a__]->PauliSigma[a]/2, ep->Eps}},
SU3C == { Abelian->False, CouplingConstant->gs, Superfield->GSF,
StructureConstant->f, Representations->{{T,Colour}, {Tb,Colourb}}, DTerm->dSUN}
};
(* ************************** *)
(* *** Interaction orders *** *)
(* ************************** *)
M$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2} };
(* ************************** *)
(* ***** Indices ***** *)
(* ************************** *)
IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexStyle[SU2W,j]; IndexRange[Index[SU2D]] = Unfold[Range[2]]; IndexStyle[SU2D,k];
IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a]; IndexRange[Index[Colour ]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
IndexRange[Index[Colourb]] = NoUnfold[Range[3]]; IndexStyle[Colourb,m];
IndexRange[Index[NEU ]] = Range[4]; IndexStyle[NEU, i];
IndexRange[Index[CHA ]] = Range[2]; IndexStyle[CHA, i];
IndexRange[Index[GEN ]] = Range[3]; IndexStyle[GEN, f];
IndexRange[Index[SCA ]] = Range[6]; IndexStyle[SCA, i];
(* ************************** *)
(* ***** Superfields ***** *)
(* ************************** *)
M$Superfields = {
VSF[1] == { ClassName->BSF, GaugeBoson->B, Gaugino->bow},
VSF[2] == { ClassName->WSF, GaugeBoson->Wi, Gaugino->wow, Indices->{Index[SU2W]}},
VSF[3] == { ClassName->GSF, GaugeBoson->G, Gaugino->gow, Indices->{Index[Gluon] }},
CSF[1] == { ClassName->HU, Chirality->Left, Weyl->huw, Scalar->hus, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
CSF[2] == { ClassName->HD, Chirality->Left, Weyl->hdw, Scalar->hds, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
CSF[3] == { ClassName->LL, Chirality->Left, Weyl->LLw, Scalar->LLs, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D], Index[GEN]}},
CSF[4] == { ClassName->ER, Chirality->Left, Weyl->ERw, Scalar->ERs, QuantumNumbers->{Y-> 1}, Indices->{Index[GEN]}},
CSF[5] == { ClassName->VR, Chirality->Left, Weyl->VRw, Scalar->VRs, Indices->{Index[GEN]}},
CSF[6] == { ClassName->QL, Chirality->Left, Weyl->QLw, Scalar->QLs, QuantumNumbers->{Y-> 1/6}, Indices->{Index[SU2D], Index[GEN], Index[Colour]}},
CSF[7] == { ClassName->UR, Chirality->Left, Weyl->URw, Scalar->URs, QuantumNumbers->{Y->-2/3}, Indices->{Index[GEN], Index[Colourb]} },
CSF[8] == { ClassName->DR, Chirality->Left, Weyl->DRw, Scalar->DRs, QuantumNumbers->{Y-> 1/3}, Indices->{Index[GEN], Index[Colourb]} }
};
(* ************************** *)
(* ***** Fields ***** *)
(* ************************** *)
M$ClassesDescription = {
(* Gauge bosons: unphysical vector fields *)
V[11] == { ClassName->B, Unphysical->True, SelfConjugate->True,
Definitions->{B[mu_]->-sw Z[mu]+cw A[mu]} },
V[12] == { ClassName->Wi, Unphysical->True, SelfConjugate->True, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
Definitions-> {Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3]->cw Z[mu] + sw A[mu]} },
(* Gauge bosons: physical vector fields *)
V[1] == { ClassName->A, SelfConjugate->True, Mass->0, Width->0, ParticleName->"a",
PDG->22, PropagatorLabel->"A", PropagatorType->Sine, PropagatorArrow->None},
V[2] == { ClassName->Z, SelfConjugate->True, Mass->MZ, Width->WZ, ParticleName->"Z",
PDG->23, PropagatorLabel->"Z", PropagatorType->Sine, PropagatorArrow->None},
V[3] == { ClassName->W, SelfConjugate->False, Mass->MW, Width->WW, ParticleName->"W+", AntiParticleName->"W-", QuantumNumbers->{Q->1},
PDG->24, PropagatorLabel->"W", PropagatorType->Sine, PropagatorArrow->Forward},
V[4] == { ClassName->G, SelfConjugate->True, Indices->{Index[Gluon]}, Mass->0, Width->0, ParticleName->"g",
PDG->21, PropagatorLabel->"G", PropagatorType->C, PropagatorArrow->None },
(* Gauginos: unphysical Weyls *)
W[20] == { ClassName->bow, Unphysical->True, Chirality->Left, SelfConjugate->False,
Definitions->{bow[s_]:>Module[{i}, -I*Conjugate[NN[i,1]]*neuw[s,i]]}},
W[21] == { ClassName->wow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
Definitions->{
wow[s_,1]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]+Conjugate[VV[i,1]]*chpw[s,i])/(I*Sqrt[2])],
wow[s_,2]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]-Conjugate[VV[i,1]]*chpw[s,i])/(-Sqrt[2])],
wow[s_,3]:>Module[{i},-I*Conjugate[NN[i,2]]*neuw[s,i]]} },
W[22] == { ClassName->gow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]}, Definitions->{gow[inds__]->-I*goww[inds]} },
(* Higgsinos: unphysical Weyls *)
W[23] == { ClassName->huw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
Definitions->{
huw[s_,1]:> Module[{i}, Conjugate[VV[i,2]]*chpw[s,i]],
huw[s_,2]:> Module[{i}, Conjugate[NN[i,4]]*neuw[s,i]] } },
W[24] == { ClassName->hdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
Definitions->{
hdw[s_,1]:> Module[{i}, Conjugate[NN[i,3]]*neuw[s,i]],
hdw[s_,2]:> Module[{i}, Conjugate[UU[i,2]]*chmw[s,i]]} },
(* Gauginos/Higgsinos: physical Weyls *)
W[1] == { ClassName->neuw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[NEU]}, FlavorIndex->NEU },
W[2] == { ClassName->chpw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q-> 1} } ,
W[3] == { ClassName->chmw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q->-1} } ,
W[4] == { ClassName->goww, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
(* Gauginos/Higgsinos: physical Diracs *)
F[1] == { ClassName->neu, SelfConjugate->True, Indices->{Index[NEU]}, FlavorIndex->NEU, WeylComponents->neuw,
ParticleName->{"n1","n2","n3","n4"},
ClassMembers->{neu1,neu2,neu3,neu4}, Mass->{Mneu,Mneu1,Mneu2,Mneu3,Mneu4}, Width->{Wneu,Wneu1,Wneu2,Wneu3,Wneu4},
PDG->{1000022,1000023,1000025,1000035}, PropagatorLabel->{"neu","neu1","neu2","neu3","neu4"}, PropagatorType->Straight, PropagatorArrow->None },
F[2] == { ClassName->ch, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, WeylComponents->{chpw,chmwbar},
ParticleName->{"x1+","x2+"}, AntiParticleName->{"x1-","x2-"}, QuantumNumbers->{Q ->1},
ClassMembers->{ch1,ch2}, Mass->{Mch,Mch1,Mch2}, Width->{Wch,Wch1,Wch2},
PDG->{1000024,1000037}, PropagatorLabel->{"ch","ch1","ch2"}, PropagatorType->Straight, PropagatorArrow->Forward },
F[3] == { ClassName->go, SelfConjugate->True, Indices->{Index[Gluon]}, WeylComponents->goww, Mass->Mgo, Width->Wgo, ParticleName->"go",
PDG->1000021, PropagatorLabel->"go", PropagatorType->Straight, PropagatorArrow->None },
(* Higgs: unphysical scalars *)
S[21] == { ClassName->hus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
Definitions->{ hus[1]->Cos[beta]*H + Sin[beta]*GP, hus[2]-> (vu + Cos[alp]*h0 + Sin[alp]*H0 + I*Cos[beta]*A0 + I*Sin[beta]*G0)/Sqrt[2] } },
S[22] == { ClassName->hds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
Definitions->{ hds[1]->(vd - Sin[alp]*h0 + Cos[alp]*H0 + I*Sin[beta]*A0 - I*Cos[beta]*G0)/Sqrt[2],hds[2]->Sin[beta]*Hbar - Cos[beta]*GPbar} },
(* Higgs: physical fields and Goldstones *)
S[1] == { ClassName->h0, SelfConjugate->True, Mass->MH01, Width->WH01, ParticleName->"h01",
PDG->25, PropagatorLabel->"h0", PropagatorType->ScalarDash, PropagatorArrow->None},
S[2] == { ClassName->H0, SelfConjugate->True, Mass->MH02, Width->WH02, ParticleName->"h02",
PDG->35, PropagatorLabel->"H0", PropagatorType->ScalarDash, PropagatorArrow->None},
S[3] == { ClassName->A0, SelfConjugate->True, Mass->MA0 , Width->WA0, ParticleName->"A0" ,
PDG->36, PropagatorLabel->"A0", PropagatorType->ScalarDash, PropagatorArrow->None},
S[4] == { ClassName->H, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MH, Width->WH,
ParticleName->"H+", AntiParticleName->"H-",
PDG->37, PropagatorLabel->"H", PropagatorType->ScalarDash, PropagatorArrow->Forward},
S[5] == { ClassName->G0, SelfConjugate->True, Mass->MZ, Width->WG0, Goldstone->Z,
ParticleName->"G0",
PDG->250, PropagatorLabel->"G0", PropagatorType->D, PropagatorArrow->None},
S[6] == { ClassName->GP, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MW, Width->WGP, Goldstone->W,
ParticleName->"G+", AntiParticleName->"G-",
PDG->251, PropagatorLabel->"GP", PropagatorType->D, PropagatorArrow->None },
(* Fermions: unphysical Weyls *)
W[25] == { ClassName->LLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN]}, FlavorIndex->SU2D,
QuantumNumbers->{Y->-1/2},
Definitions->{LLw[s_,1,ff_]:>Module[{ff2}, PMNS[ff,ff2]*vLw[s,ff2]], LLw[s_,2,ff_]->eLw[s,ff]}},
W[26] == { ClassName->QLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN],Index[Colour]},FlavorIndex->SU2D,
QuantumNumbers->{Y->1/6},
Definitions->{QLw[s_,1,ff_,cc_]->uLw[s,ff,cc], QLw[s_,2,ff_,cc_]:>Module[{ff2}, CKM[ff,ff2] dLw[s,ff2,cc]]}},
(* Fermions: physical Weyls *)
W[5] == { ClassName->vLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
W[6] == { ClassName->eLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
W[7] == { ClassName->VRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
W[8] == { ClassName->ERw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1} },
W[9] == { ClassName->uLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
W[10]== { ClassName->dLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
W[11]== { ClassName->URw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3} },
W[12]== { ClassName->DRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3} },
(* Fermions: physical Dirac *)
F[4] == { ClassName->vl, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{vLw,VRwbar},
ParticleName->{"ve","vm","vt"}, AntiParticleName->{"ve~","vm~","vt~"},
ClassMembers->{ve,vm,vt}, Mass->{Mvl,Mve,Mvm,Mvt}, Width->0,
PDG->{12,14,16}, PropagatorLabel->{"v","ve","vm","vt"}, PropagatorType->Straight, PropagatorArrow->Forward},
F[5] == { ClassName->l, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{eLw,ERwbar}, QuantumNumbers->{Q->-1},
ParticleName->{"e-","mu-","tau-"}, AntiParticleName->{"e+","mu+","tau+"},
ClassMembers->{e,m,ta}, Mass->{Ml,Me,Mm,Mta}, Width->0,
PDG->{11,13,15}, PropagatorLabel->{"l","e","mu","tau"}, PropagatorType->Straight, PropagatorArrow->Forward},
F[6] == { ClassName->uq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{uLw,URwbar}, QuantumNumbers->{Q-> 2/3},
ParticleName->{"u","c","t"}, AntiParticleName->{"u~","c~","t~"},
ClassMembers->{u,c,t}, Mass->{Muq,MU,MC,MT}, Width->{Wuq,0,0,WT},
PDG->{2,4,6}, PropagatorLabel->{"uq","u","c","t"}, PropagatorType->Straight, PropagatorArrow->Forward},
F[7] == { ClassName->dq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{dLw,DRwbar}, QuantumNumbers->{Q->-1/3},
ParticleName->{"d","s","b"}, AntiParticleName->{"d~","s~","b~"},
ClassMembers->{d,s,b}, Mass->{Mdq,MD,MS,MB}, Width->0,
PDG->{1,3,5}, PropagatorLabel->{"dq","d","s","b"}, PropagatorType->Straight, PropagatorArrow->Forward},
(* Sfermion: unphysical scalars *)
S[23] == { ClassName->LLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
Definitions->{ LLs[1,ff_] :> Module[{ff2,ff3}, Conjugate[Rn[ff3,ff2]]*PMNS[ff,ff2]*sn[ff3]], LLs[2,ff_]:> Module[{ff2}, Conjugate[RlL[ff2,ff]]*sl[ff2]] } },
S[24] == { ClassName->ERs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1},
Definitions->{ ERs[ff_] :> Module[{ff2}, slbar[ff2]*RlR[ff2,ff]]} },
S[25] == { ClassName->VRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
Definitions->{ VRs[_] -> 0 } },
S[26] == { ClassName->QLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN],Index[Colour]}, FlavorIndex->SU2D, QuantumNumbers->{Y->1/6},
Definitions->{
QLs[1,ff_,cc_]:>Module[{ff2},Conjugate[RuL[ff2,ff]]*su[ff2,cc]],
QLs[2,ff_,cc_]:>Module[{ff2,ff3},Conjugate[RdL[ff2,ff3]]*CKM[ff,ff3]*sd[ff2,cc]]}},
S[27] == { ClassName->URs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3},
Definitions->{ URs[ff_,cc_]:>Module[{ff2}, subar[ff2,cc]*RuR[ff2,ff]]} },
S[28] == { ClassName->DRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3},
Definitions->{ DRs[ff_,cc_]:>Module[{ff2}, sdbar[ff2,cc]*RdR[ff2,ff]]} },
(* Sfermion: physical scalars *)
S[7] == { ClassName->sn, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
ParticleName->{"sv1","sv2","sv3"}, AntiParticleName->{"sv1~","sv2~","sv3~"},
ClassMembers-> {sn1, sn2, sn3}, Mass->{Msn,Msn1,Msn2,Msn3}, Width->{Wsn,Wsn1,Wsn2,Wsn3},
PDG->{1000012,1000014,1000016}, PropagatorLabel->{"sn","sn1","sn2","sn3"}, PropagatorType->ScalarDash, PropagatorArrow->Forward },
S[8] == { ClassName->sl, SelfConjugate->False, Indices->{Index[SCA]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1},
ParticleName->{"sl1-","sl2-","sl3-","sl4-","sl5-","sl6-"}, AntiParticleName->{"sl1+","sl2+","sl3+","sl4+","sl5+","sl6+"},
ClassMembers->{sl1,sl2,sl3,sl4,sl5,sl6}, Mass->{Msl,Msl1,Msl2,Msl3,Msl4,Msl5,Msl6}, Width->{Wsl,Wsl1,Wsl2,Wsl3,Wsl4,Wsl5,Wsl6},
PDG->{1000011,1000013,1000015,2000011,2000013,2000015}, PropagatorLabel->{"sl","sl1","sl2","sl3","sl4","sl5","sl6"},
PropagatorType->ScalarDash, PropagatorArrow->Forward},
S[9] == { ClassName->su, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q-> 2/3},
ParticleName->{"su1","su2","su3","su4","su5","su6"}, AntiParticleName->{"su1~","su2~","su3~","su4~","su5~","su6~"},
ClassMembers->{su1,su2,su3,su4,su5,su6}, Mass->{Msu,Msu1,Msu2,Msu3,Msu4,Msu5,Msu6}, Width->{Wsu,Wsu1,Wsu2,Wsu3,Wsu4,Wsu5,Wsu6},
PDG->{1000002,1000004,1000006,2000002,2000004,2000006}, PropagatorLabel->{"su","su1","su2","su3","su4","su5","su6"},
PropagatorType->ScalarDash, PropagatorArrow->Forward},
S[10]== { ClassName->sd, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1/3},
ParticleName->{"sd1","sd2","sd3","sd4","sd5","sd6"}, AntiParticleName->{"sd1~","sd2~","sd3~","sd4~","sd5~","sd6~"},
ClassMembers->{sd1,sd2,sd3,sd4,sd5,sd6}, Mass->{Msd,Msd1,Msd2,Msd3,Msd4,Msd5,Msd6}, Width->{Wsd,Wsd1,Wsd2,Wsd3,Wsd4,Wsd5,Wsd6},
PDG->{1000001,1000003,1000005,2000001,2000003,2000005}, PropagatorLabel->{"sd","sd1","sd2","sd3","sd4","sd5","sd6"},
PropagatorType->ScalarDash, PropagatorArrow->Forward},
(* Ghost: related to unphysical gauge bosons *)
U[11] == { ClassName->ghWi, Unphysical->True, SelfConjugate->False, Ghost->Wi, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
Definitions->{ghWi[1]->(ghWp+ghWm)/Sqrt[2], ghWi[2]->(ghWm-ghWp)/(I*Sqrt[2]), ghWi[3]->cw ghZ+sw ghA} } ,
U[12] == { ClassName->ghB, Unphysical->True, SelfConjugate->False, Ghost->B,
Definitions->{ghB->-sw ghZ+cw ghA} },
(* Ghost: related to physical gauge bosons *)
U[1] == { ClassName->ghG, SelfConjugate->False, Indices->{Index[Gluon]}, Ghost->G, QuantumNumbers->{GhostNumber->1},
Mass->0, Width->0, ParticleName->"ghG", PropagatorLabel->"uG", PropagatorType->GhostDash, PropagatorArrow->Forward},
U[2] == { ClassName->ghA, SelfConjugate->False, Ghost->A, QuantumNumbers->{GhostNumber->1},
Mass->0, Width->0, ParticleName->"ghA", PropagatorLabel->"uA", PropagatorType->GhostDash, PropagatorArrow->Forward},
U[3] == { ClassName->ghZ, SelfConjugate->False, Ghost->Z, QuantumNumbers->{GhostNumber->1},
Mass->{MZ,Internal}, Width->WZ, ParticleName->"ghZ", PropagatorLabel->"uZ", PropagatorType->GhostDash, PropagatorArrow->Forward},
U[4] == { ClassName->ghWp, SelfConjugate->False, Ghost->W, QuantumNumbers->{GhostNumber->1, Q->1},
Mass->{MW,Internal}, Width->WW, ParticleName->"ghWp", PropagatorLabel->"uWp", PropagatorType->GhostDash, PropagatorArrow->Forward},
U[5] == { ClassName->ghWm, SelfConjugate->False, Ghost->Wbar, QuantumNumbers->{GhostNumber->1, Q->-1},
Mass->{MW,Internal}, Width->WW, ParticleName->"ghWm", PropagatorLabel->"uWm", PropagatorType->GhostDash, PropagatorArrow->Forward}
};
(* ************************** *)
(* ***** Parameters ***** *)
(* ************************** *)
M$Parameters = {
(* Mixing: external parameters *)
RMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->UPMNS,
Description->"Neutrino PMNS mixing matrix (real part)"},
IMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMUPMNS,
Description->"Neutrino PMNS mixing matrix (imaginary part)"},
RCKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->VCKM,
Description->"CKM mixing matrix (real part)"},
ICKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMVCKM,
Description->"CKM mixing matrix (imaginary part)"},
RNN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->NMIX,
Description->"Neutralino mixing matrix (real part)"},
INN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->IMNMIX,
Description->"Neutralino mixing matrix (imaginary part)"},
RUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->UMIX,
Description->"Chargino mixing matrix U (real part)"},
IUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMUMIX,
Description->"Chargino mixing matrix U (imaginary part)"},
RVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->VMIX,
Description->"Chargino mixing matrix V (real part)"},
IVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMVMIX,
Description->"Chargino mixing matrix V (imaginary part)"},
RRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->SNUMIX,
Description->"Sneutrino mixing matrix (real part)"},
IRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMSNUMIX,
Description->"Sneutrino mixing matrix (imaginary part)"},
RRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->SELMIX,
Description->"Slepton mixing matrix (real part)"},
IRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMSELMIX,
Description->"Slepton mixing matrix (imaginary part)"},
RRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->USQMIX,
Description->"Up squark mixing matrix (real part)"},
IRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMUSQMIX,
Description->"Up squark mixing matrix (imaginary part)"},
RRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->DSQMIX,
Description->"Down squark mixing matrix (real part)"},
IRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMDSQMIX,
Description->"Down squark mixing matrix (imaginary part)"},
alp == { TeX->\[Alpha], ParameterType->External, ComplexParameter->False, BlockName->FRALPHA, Description-> "Neutral Higgses mixing angle"},
(* Mixing: internal parameters *)
cw == { TeX->Subscript[c,w], ParameterType->Internal, ComplexParameter->False, Value->MW/MZ, Description->"Cosine of the weak angle"},
sw == { TeX->Subscript[s,w], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[1-cw^2], Description->"Sine of the weak angle"},
PMNS== { TeX->Superscript[U,pmns], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
If[$MNSDiag, Definitions:>{PMNS[i_,j_]:>0 /;(i!=j), PMNS[i_,j_]:>1/;(i==j)}, Value->{PMNS[i_,j_]:>RMNS[i,j]+I*IMNS[i,j]}],
Description-> "Neutrino PMNS mixing matrix"},
CKM == { TeX->Superscript[V,ckm], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
If[$CKMDiag, Definitions:>{CKM[i_,j_]:>0 /;(i!=j), CKM[i_,j_]:>1/;(i==j)}, Value->{CKM[i_,j_]:>RCKM[i,j]+I*ICKM[i,j]}],
Description-> "CKM mixing matrix"},
NN == { TeX->N, ParameterType->Internal, ComplexParameter->True, Indices->{Index[NEU],Index[NEU]}, Unitary->True,
Value->{NN[i_,j_]:>RNN[i,j]+I*INN[i,j]}, Description-> "Neutralino mixing matrix"},
UU == { TeX->U, ParameterType->Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
Value->{UU[i_,j_]:>RUU[i,j]+I*IUU[i,j]}, Description-> "Chargino mixing matrix U"},
VV == { TeX->V, ParameterType->Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
Value->{VV[i_,j_]:>RVV[i,j]+I*IVV[i,j]}, Description-> "Chargino mixing matrix V"},
Rl == { TeX->Superscript[R,l], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
Value->{Rl[i_,j_]:>RRl[i,j]+I*IRl[i,j]}, Description-> "Slepton mixing matrix"},
Rn == { TeX->Superscript[R,n], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
Value->{Rn[i_,j_]:>RRn[i,j]+I*IRn[i,j]}, Description-> "Sneutrino mixing matrix"},
Ru == { TeX->Superscript[R,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
Value->{Ru[i_,j_]:>RRu[i,j]+I*IRu[i,j]}, Description-> "Up squark mixing matrix"},
Rd == { TeX->Superscript[R,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
Value->{Rd[i_,j_]:>RRd[i,j]+I*IRd[i,j]}, Description-> "Down squark mixing matrix"},
(* Left and right parts of the sfermion mixing matrices *)
RlL == { TeX->Superscript[RL,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
Definitions->{RlL[i_,j_]:>Rl[i,j]/;NumericQ[j]}, Description-> "Slepton mixing matrix - first three columns"},
RlR == { TeX->Superscript[RR,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
Definitions->{RlR[i_,j_]:>Rl[i,j+3]/;NumericQ[j]},Description-> "Slepton mixing matrix - last three columns"},
RuL == { TeX->Superscript[RL,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
Definitions->{RuL[i_,j_]:>Ru[i,j]/;NumericQ[j]}, Description-> "Up squark mixing matrix - first three columns"},
RuR == { TeX->Superscript[RR,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
Definitions->{RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]},Description-> "Up squark mixing matrix - last three columns"},
RdL == { TeX->Superscript[RL,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
Definitions->{RdL[i_,j_]:>Rd[i,j]/;NumericQ[j]}, Description-> "Down squark mixing matrix - first three columns"},
RdR == { TeX->Superscript[RR,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
Definitions->{RdR[i_,j_]:>Rd[i,j+3]/;NumericQ[j]},Description-> "Down squark mixing matrix - last three columns"},
(* Couplings constants: external parameters *)
aEWM1 == { TeX->Subsuperscript[\[Alpha],w,-1], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->1, InteractionOrder->{QED,-2},
Description->"Inverse of the EW coupling constant at the Z pole"},
aS == { TeX->Subscript[\[Alpha],s], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->3, InteractionOrder->{QCD, 2},
Description->"Strong coupling constant at the Z pole."},
(* Couplings constants: internal parameters *)
ee == { TeX->e, ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi / aEWM1], InteractionOrder->{QED,1},
Description->"Electric coupling constant"},
gs == { TeX->Subscript[g,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi aS], InteractionOrder->{QCD,1}, ParameterName->G,
Description->"Strong coupling constant"},
gp == { TeX->g', ParameterType->Internal, ComplexParameter->False, Definitions-> {gp->ee/cw}, InteractionOrder->{QED,1},
Description->"Hypercharge coupling constant at the Z pole"},
gw == { TeX->Subscript[g,w], ParameterType->Internal, ComplexParameter->False, Definitions-> {gw->ee/sw}, InteractionOrder->{QED,1},
Description->"Weak coupling constant at the Z pole"},
(* Higgs sector: external parameters *)
tb == { TeX->Subscript[t,b], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->2, Description->"Ratio of the two Higgs vevs"},
(* Higgs sector: internal parameters *)
beta == { TeX->\[Beta], ParameterType->Internal, ComplexParameter->False, Value->ArcTan[tb], Description->"Arctan of the ratio of the two Higgs vevs"},
vev == { TeX->v, ParameterType->Internal, ComplexParameter->False, Value->2*MZ*sw*cw/ee, InteractionOrder->{QED,-1},
Description->"Higgs vacuum expectation value"},
vd == { TeX->Subscript[v,d], ParameterType->Internal, ComplexParameter->False, Value->vev*Cos[beta], InteractionOrder->{QED,-1},
Description->"Down-type Higgs vacuum expectation value"},
vu == { TeX->Subscript[v,u], ParameterType->Internal, ComplexParameter->False, Value->vev*Sin[beta], InteractionOrder->{QED,-1},
Description->"Up-type Higgs vacuum expectation value"},
(* Superpotential: external parameters *)
Ryu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YU,
Description->"Up-type quark Yukawa matrix (real part)"},
Iyu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYU,
Description->"Up-type quark Yukawa matrix (imaginary part)"},
Ryd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YD,
Description->"Down-type quark Yukawa matrix (real part)"},
Iyd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYD,
Description->"Down-type quark Yukawa matrix (imaginary part)"},
Rye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YE,
Description->"Charged lepton Yukawa matrix (real part)"},
Iye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYE,
Description->"Charged lepton Yukawa matrix (imaginary part)"},
RMUH == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->1, Description->"Off-diagonal Higgs mixing parameter (real part)"},
IMUH == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->1, Description->"Off-diagonal Higgs mixing parameter (imaginary part)"},
(* Superpotential: internal parameters *)
yu == { TeX->Superscript[y,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Definitions:>{yu[i_,j_]:>0 /;(i!=j)}, Value->{yu[i_,j_]:>If[i==j,Ryu[i,j]+I*Iyu[i,j]]}, InteractionOrder->{QED,1}, Description-> "Up-type quark Yukawa matrix"},
yd == { TeX->Superscript[y,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Definitions:>{yd[i_,j_]:>0 /;(i!=j)}, Value->{yd[i_,j_]:>If[i==j,Ryd[i,j]+I*Iyd[i,j]]}, InteractionOrder->{QED,1}, Description-> "Down-type quark Yukawa matrix"},
ye == { TeX->Superscript[y,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Definitions:>{ye[i_,j_]:>0 /;(i!=j)}, Value->{ye[i_,j_]:>If[i==j,Rye[i,j]+I*Iye[i,j]]}, InteractionOrder->{QED,1}, Description-> "Charged lepton Yukawa matrix"},
MUH == { TeX->\[Mu], ParameterType->Internal, ComplexParameter->True, Value->RMUH+I*IMUH, Description->"Off diagonal Higgs mixing parameter"},
(* Soft terms: external parameters *)
RMx1 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->1, Description->"Bino mass (real part)"},
IMx1 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->1, Description->"Bino mass (imaginary part)"},
RMx2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->2, Description->"Wino mass (real part)"},
IMx2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->2, Description->"Wino mass (imaginary part)"},
RMx3 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->3, Description->"Gluino mass (real part)"},
IMx3 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->3, Description->"Gluino mass (imaginary part)"},
mHu2 == { TeX->Subsuperscript[m,Subscript[H,u],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->22,
Description->"Up-type Higgs squared mass"},
mHd2 == { TeX->Subsuperscript[m,Subscript[H,d],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->21,
Description->"Down-type Higgs squared mass"},
MA2 == { TeX->Subsuperscript[m,A,2], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->4,
Description->"Pseudoscalar Higgs squared mass"},
RmL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSL2,
Description->"Left-handed slepton squared mass matrix (real part)"},
ImL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSL2,
Description->"Left-handed slepton squared mass matrix (imaginary part)"},
RmE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSE2,
Description->"Right-handed slepton squared mass matrix (real part)"},
ImE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSE2,
Description->"Right-handed slepton squared mass matrix (imaginary part)"},
RmQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSQ2,
Description->"Left-handed squark squared mass matrix (real part)"},
ImQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSQ2,
Description->"Left-handed squark squared mass matrix (imaginary part)"},
RmU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSU2,
Description->"Right-handed up-type squark squared mass matrix (real part)"},
ImU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSU2,
Description->"Right-handed up-type squark squared mass matrix (imaginary part)"},
RmD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSD2,
Description->"Right-handed down-type squark squared mass matrix (real part)"},
ImD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSD2,
Description->"Right-handed down-type squark squared mass matrix (imaginary part)"},
Rte == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TE,
Description->"Charged slepton trilinear coupling (real part)"},
Ite == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTE,
Description->"Charged slepton trilinear coupling (imaginary part)"},
Rtu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TU,
Description->"Up-type squark trilinear coupling (real part)"},
Itu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTU,
Description->"Up-type squark trilinear coupling (imaginary part)"},
Rtd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TD,
Description->"Down-type squark trilinear coupling (real part)"},
Itd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTD,
Description->"Down-type squark trilinear coupling (imaginary part)"},
(* Soft terms: internal parameters *)
Mx1 == { TeX->Subscript[M,1], ParameterType->Internal, ComplexParameter->True, Value->RMx1+I*IMx1, Description->"Bino mass"},
Mx2 == { TeX->Subscript[M,2], ParameterType->Internal, ComplexParameter->True, Value->RMx2+I*IMx2, Description->"Wino mass"},
Mx3 == { TeX->Subscript[M,3], ParameterType->Internal, ComplexParameter->True, Value->RMx3+I*IMx3, Description->"Gluino mass"},
bb == { TeX->b, ParameterType->Internal, ComplexParameter->True, Value->(mHu2-mHd2)*Tan[2*alp]/2 - MZ^2*(Cos[2*beta]*Tan[2*alp] + Sin[2*beta]/2),
Description->"Higgs bilinear soft term"},
mL2 == { TeX->Subsuperscript[m,OverTilde[L],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Value->{mL2[i_,j_]:>RmL2[i,j]+I*ImL2[i,j]}, Description-> "Left-handed slepton squared mass matrix"},
mE2 == { TeX->Subsuperscript[m,OverTilde[E],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Value->{mE2[i_,j_]:>RmE2[i,j]+I*ImE2[i,j]}, Description-> "Right-handed slepton squared mass matrix"},
mQ2 == { TeX->Subsuperscript[m,OverTilde[Q],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Value->{mQ2[i_,j_]:>RmQ2[i,j]+I*ImQ2[i,j]}, Description-> "Left-handed squark squared mass matrix"},
mU2 == { TeX->Subsuperscript[m,OverTilde[U],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Value->{mU2[i_,j_]:>RmU2[i,j]+I*ImU2[i,j]}, Description-> "Right-handed up-type squark squared mass matrix"},
mD2 == { TeX->Subsuperscript[m,OverTilde[D],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
Value->{mD2[i_,j_]:>RmD2[i,j]+I*ImD2[i,j]}, Description-> "Right-handed down-type squark squared mass matrix"},
te == { TeX->Subscript[T,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
Value->{te[i_,j_]:>Rte[i,j]+I*Ite[i,j]}, Description-> "Charged slepton trilinear coupling"},
tu == { TeX->Subscript[T,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
Value->{tu[i_,j_]:>Rtu[i,j]+I*Itu[i,j]}, Description-> "Up-type squark trilinear coupling"},
td == { TeX->Subscript[T,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
Value->{td[i_,j_]:>Rtd[i,j]+I*Itd[i,j]}, Description-> "Down-type squark trilinear coupling"}
};
(* ************************** *)
(* **** Diracification **** *)
(* ************************** *)
ToDirac[exp_]:= Module[{tmp=Expand[exp],cnt=0,prg1=0,prg2=0,prgo1=0,prgo2=0,tot},
Colourb=Colour;
tmp = If[Head[tmp]===Plus,List@@tmp,List[tmp]]/.Tb[a_,i_,j_]->-T[a,j,i];
tmp = OptimizeIndex[#] &/@ tmp;
tot=Length[tmp];
Print["Flavor expansion: ", ProgressIndicator[Dynamic[prg1]]];
tmp = Module[{}, cnt++; prg1=cnt/tot;
Expand[(ExpandIndices[#, FlavorExpand->{SU2W, SU2D}] /. {
gp->ee/cw,
gw->ee/sw,
cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2),
cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw,
Power[PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)],2]->PauliSigma[1,i,j]^2 + PauliSigma[3,i,j]^2 + PauliSigma[2,i,j]^2,
PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)] PauliSigma[a_,k_?(NumericQ[#] &),l_?(NumericQ[#] &)]->
PauliSigma[1,i,j] PauliSigma[1,k,l] + PauliSigma[2,i,j] PauliSigma[2,k,l] + PauliSigma[3,i,j] PauliSigma[3,k,l]})]] &/@ tmp;
tmp = Plus@@tmp//.{cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2), cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw};
cnt=0; tot=Length[tmp];
Print["Opt 1: ",ProgressIndicator[Dynamic[prgo1]]];
tmp = Module[{}, cnt++; prgo1=cnt/tot;OptimizeIndex[#]] &/@ (List@@tmp);
Print["Weyl2Dirac: ",ProgressIndicator[Dynamic[prg2]]];cnt=0;
tmp = Module[{}, cnt++; prg2=cnt/tot; WeylToDirac[#]] &/@ tmp;
Print["Opt2: ",ProgressIndicator[Dynamic[prgo2]]];cnt=0;
tmp = Module[{}, cnt++; prgo2=cnt/tot;OptimizeIndex[#]] &/@ tmp;
Clear[Colourb];
Expand[Plus@@tmp]];
(* ************************** *)
(* ***** Lagrangian ***** *)
(* ************************** *)
(* LVector *)
LVector := Module[{}, Plus@@(Module[{tmp}, tmp = SF2Components[#]; Expand[tmp[[2, 5]] + tmp[[2, 6]]]] &/@ (List @@ VSFKineticTerms[]))];
(* LChiral *)
LChiral := Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ CSFKineticTerms[]) );
(* Superpotential *)
SPot:= Module[{ff1,ff2,ff3,cc1},
yu[ff1,ff2] UR[ff1,cc1] (QL[1,ff2,cc1] HU[2] - QL[2,ff2,cc1] HU[1]) -
yd[ff1,ff3] Conjugate[CKM[ff2,ff3]] DR[ff1,cc1] (QL[1,ff2,cc1] HD[2] - QL[2,ff2,cc1] HD[1]) -
ye[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) +
MUH (HU[1] HD[2] - HU[2] HD[1])];
LSuperW:= ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[SPot+HC[SPot]])) )/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
(* Soft SUSY-breaking Lagrangian *)
LSoft := Module[{Mino, MSca, Tri, Bil},
(* Gaugino mass terms *)
Mino:=Module[{s,gl}, Mx1*bow[s].bow[s] + Mx2*wow[s,gl].wow[s,gl] + Mx3*goww[s,gl].goww[s,gl]];
(* Scalar mass terms *)
MSca:=Module[{ii,ff1,ff2,ff3,ff4,cc1},
- mHu2*HC[hus[ii]]*hus[ii] - mHd2*HC[hds[ii]]*hds[ii] -
mL2[ff1,ff2]*HC[LLs[ii,ff1]]*LLs[ii,ff2] - mE2[ff1,ff2]*HC[ERs[ff1]]*ERs[ff2] -
CKM[ff1,ff2]*mQ2[ff2,ff3]*Conjugate[CKM[ff4,ff3]]*HC[QLs[ii,ff1,cc1]]*QLs[ii,ff4,cc1] -
mU2[ff1,ff2]*HC[URs[ff1,cc1]]*URs[ff2,cc1] - mD2[ff1,ff2]*HC[DRs[ff1,cc1]]*DRs[ff2,cc1] ];
(* Trilinear couplings *)
Tri:=-tu[ff1,ff2]*URs[ff1,cc1] (QLs[1,ff2,cc1] hus[2] - QLs[2,ff2,cc1] hus[1]) +
Conjugate[CKM[ff3,ff2]]*td[ff1,ff2]*DRs[ff1,cc1] (QLs[1,ff3,cc1] hds[2] - QLs[2,ff3,cc1] hds[1]) +
te[ff1,ff2]*ERs[ff1] (LLs[1,ff2] hds[2] - LLs[2,ff2] hds[1]) ;
(* Bilinear couplings *)
Bil:=-bb*(hus[1] hds[2] - hus[2] hds[1]);
(* Everything together *)
(Mino+HC[Mino])/2 + MSca + Tri + HC[Tri] + Bil + HC[Bil]];
(* Ghost Lagrangian and gauge fixing terms *)
LFeynmanGFix := Module[{VectorizeU,VectorizeD, Phiu,Phid,Phiu0,Phid0, phid1,phid2,phiu1,phiu2, GF1,GF2,GF3,LGF, nrules, kk,ll, LGh1,LGh2,LGh3,LGhS,LGh, genu,gend, gh,ghbar},
(* Expression the doublets in the nu/nd basis *)
VectorizeU[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
VectorizeD[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
(* Higgs doublets *)
Phiu = Expand[ {(phiu1 + I phiu2)/Sqrt[2], (Cos[alp]*h0+Sin[alp]*H0 + I*Cos[beta]*A0+I*Sin[beta]*G0)/Sqrt[2]} ];
Phid = Expand[ {(-Sin[alp]*h0+Cos[alp]*H0 + I*Sin[beta]*A0-I*Cos[beta]*G0)/Sqrt[2], (phid1 + I phid2)/Sqrt[2]} ];
(* vevs *)
Phiu0 = {0, vu/Sqrt[2]};
Phid0 = {vd/Sqrt[2], 0};
(* Back to the physical Higgses and Goldstones *)
nrules := {
phid1 -> (-Cos[beta]*GPbar - Cos[beta]*GP + Sin[beta]*Hbar + Sin[beta]*H)/Sqrt[2],
phid2 -> (-Cos[beta]*GPbar + Cos[beta]*GP + Sin[beta]*Hbar - Sin[beta]*H)/(I Sqrt[2]),
phiu1 -> ( Sin[beta]*GP + Sin[beta]*GPbar + Cos[beta]*H + Cos[beta]*Hbar)/Sqrt[2],
phiu2 -> (Sin[beta]*GP - Sin[beta]*GPbar + Cos[beta]*H - Cos[beta]*Hbar)/(I Sqrt[2])};
(* Gauge-fixing functions *)
GF1 := Module[{mu}, del[B[mu] , mu] - gp VectorizeU[-I/2 Phiu0].VectorizeU[Phiu] - gp VectorizeD[I/2 Phid0].VectorizeD[Phid] ];
GF2[k_] := Module[{mu}, del[Wi[mu,k], mu] - gw VectorizeU[-I/2 PauliSigma[k].Phiu0].VectorizeU[Phiu] - gw VectorizeD[-I/2 PauliSigma[k].Phid0].VectorizeD[Phid] ];
GF3[a_] := Module[{mu}, del[G[mu,a] , mu] ];
(* Gauge-fixing Lagrangian *)
LGF = Expand[-1/2*(GF1 HC[GF1] + Sum[GF2[kk] HC[GF2[kk]], {kk, 1, 3}]) /.nrules /. {HC[a_]->a, h0->0, H0->0, A0->0, H->0, Hbar->0}];
LGF = OptimizeIndex[Expand[ExpandIndices[LGF, FlavorExpand->SU2W]]];
(* Ghost Lagrangians *)
LGh1 = -ghBbar.del[DC[ghB,mu],mu];
LGh2 = -ghWibar[kk].del[DC[ghWi[kk], mu], mu];
LGh3 = -ghGbar[kk].del[DC[ghG[kk],mu],mu];
genu := {-I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
gend := { I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
LGhS = Sum[
-ghbar[[kk]].gh[[ll]] (VectorizeU[genu[[kk]].Phiu0].VectorizeU[genu[[ll]].(Phiu+Phiu0)] + VectorizeD[gend[[kk]].Phid0].VectorizeD[gend[[ll]].(Phid+Phid0)]),
{kk,1,4},{ll,1,4}];
LGh = ExpandIndices[LGh1+LGh2+LGh3+LGhS, FlavorExpand->SU2W] /.nrules;
LGF+LGh];
(* Collecting all the pieces together *)
Lag := ToDirac[SolveEqMotionF[SolveEqMotionD[LVector+LChiral+LSuperW+LSoft]]] + LFeynmanGFix ;