-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlfring.go
641 lines (591 loc) · 20 KB
/
lfring.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
* MIT License
*
* Copyright (c) 2017 Milad (Mike) Taghavi <mitghi[at]me/gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// Package lfring provides Lock-Free Multi-Reader, Multi-Writer Ring Buffer implementation.
package lfring
import (
"errors"
"runtime"
"sync/atomic"
"unsafe"
)
/*
* implementation of Multi-Word Compare-and-Swap
* atomic operation.
*/
/**
* TODO:
* . implement a variant of `RDCSSComplete` to let
* competitors help with completing second-stage
* RDCCS operation.
* . implement `Drain(....)`
* . refactor TryPop(....)
* . bound checks for counter
**/
// Defaults
const (
// ui64MASK is maximum int value
ui64NMASK = ^uint64(0)
// cRDSCHDTHRESHOLD is reader's spin threshold before
// yielding control with `runtime.Gosched()`.
cRDSCHDTHRESHOLD = 1000
// cWRSCHDTHRESHOLD is writer's spin threshold
// before yielding control with `runtime.Gosched()`.
cWRSCHDTHRESHOLD = 1000
)
const (
cArchADDRSIZE = 32 << uintptr(^uintptr(0)>>63)
cArchWORDSIZE = cArchADDRSIZE >> 3
cArchMAXTAG = cArchWORDSIZE - 1
cArchPTRMASK = ^uintptr((cArchADDRSIZE >> 5) + 1)
)
var (
EPTRINVAL error = errors.New("pointer: invalid.")
EPTRINVALT error = errors.New("pointer: invalid tag.")
)
var (
_PTR_ unsafe.Pointer
_INTERFACE_ interface{}
ArchPTRSIZE uintptr = unsafe.Sizeof(_PTR_)
sizeINTERFACE uintptr = unsafe.Sizeof(_INTERFACE_)
)
// - MARK: Struct section.
// Ring is a aligned struct with size of 64 bytes
// used to implement ring buffer. Note that ring
// capacity is always rounded to next power of 2.
type Ring struct {
// 64bit aligned
nodes []unsafe.Pointer // storage with capacity `size`, pow2
wri, rdi, maxrdi, size uint64 // write, read, max-read and size (mask) indexes
count uint64 // occupancy counter
}
// - MARK: Alloc/Init section.
// NewRing allocates and initializes a new `Ring`
// struct and returns a pointer to it. Note,
// `capacity` is always rounded to nearest power
// of two.
func NewRing(capacity uint64) (r *Ring) {
r = &Ring{size: roundP2(capacity)}
r.nodes = make([]unsafe.Pointer, r.size)
return r
}
// - MARK: Ring section.
// Len returns number of items in ring.
func (r *Ring) Len() uint64 {
return atomic.LoadUint64(&r.count)
}
// IsFull returns whether ring is full.
func (r *Ring) IsFull() bool {
return r.Len() == r.size
}
func (r *Ring) IsEmpty() bool {
// TODO
// . specify feasible upper
// bounds to prevent false-positives
// caused by `uint64` decrements.
return r.Len() == 0
}
// Push atomically writes `data` to next empty
// slot and returns true when successfull. Note,
// when ring is full, false is returned; does
// not overwrite old slots.
func (r *Ring) Push(data interface{}) bool {
var (
mask uint64 = r.size + 1
currwri uint64
i int = 0
)
for {
currwri = atomic.LoadUint64(&r.wri)
if ((currwri + 1) % mask) == (atomic.LoadUint64(&r.rdi) % mask) {
return false
}
// acquire current slot by pushing
// competitors forward; dedicated
// write access.
if atomic.CompareAndSwapUint64(&r.wri, currwri, currwri+1) {
break
}
}
// put data pointer in the slot
if SetSliceSlot(unsafe.Pointer(&r.nodes), int(currwri%(mask-1)), ArchPTRSIZE, unsafe.Pointer(&data)) {
// update readers boundary
for !atomic.CompareAndSwapUint64(&r.maxrdi, currwri, currwri+1) {
i++
if i == cWRSCHDTHRESHOLD {
// yield control to scheduler
// and let competitors run.
runtime.Gosched()
i = 0
}
}
atomic.AddUint64(&r.count, 1)
return true
}
return false
}
// Pop atomically pops a value when available and
// returns it with a boolean indicating success
// status. This receiver method spins until
// `(currdi % mask) == (maxrdi % mask)` holds
// true. It returns immediately when ring is
// empty.
func (r *Ring) Pop() (interface{}, bool) {
var (
mask uint64 = r.size + 1 // capacity mask
entry unsafe.Pointer = unsafe.Pointer(&r.nodes) // nodes pointer ( reference )
rdiptr unsafe.Pointer = unsafe.Pointer(&r.rdi) // read-index pointer
index int // linear index of current slot in `r.nodes`
i int // yield threshold
currdi uint64 // current read-index
maxrdi uint64 // read-index boundary
data interface{} // data address ( dereferenced data pointer )
dataptr unsafe.Pointer // data pointer ( dereferenced slot pointer )
offset unsafe.Pointer // slot offset ( reference )
slotptr unsafe.Pointer // slot pointer ( reference )
)
for {
currdi = atomic.LoadUint64(&r.rdi)
maxrdi = atomic.LoadUint64(&r.maxrdi)
if (currdi % mask) == (maxrdi % mask) {
return nil, false
}
// calculate slot address
// load data pointer from slot address
// get and store data pointer from current slot
index = int(currdi % (mask - 1))
offset = OffsetSliceSlot(entry, index, ArchPTRSIZE)
dataptr = atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(offset)))
if dptr := (*interface{})(dataptr); dptr != nil {
data = *dptr
} else {
i++
continue
}
if HasTag(dataptr) {
// dataptr is `rdcssDescriptor` which
// indicates ongoing RDCSS operation
// on current slot.
i++
continue
}
slotptr = unsafe.Pointer(offset)
// swap slot value with nil iff read-index
// is unchanged. this op is performed in
// two atomic stages. when interrupted
// after first stage, the state remains
// valid and exclusive access still belongs
// to current thread, because `rdcssDescriptor`
// acts as a barrier and prevents other threads
// from performing operations.
if RDCSS(
(*unsafe.Pointer)(rdiptr),
(unsafe.Pointer)(unsafe.Pointer(uintptr(currdi))),
(*unsafe.Pointer)(unsafe.Pointer(slotptr)),
(unsafe.Pointer)(dataptr),
nil,
) {
if atomic.CompareAndSwapUint64(&r.rdi, currdi, currdi+1) {
atomic.AddUint64(&r.count, ui64NMASK)
// succesfull, return previously acquired data
return data, true
}
}
i++
if i == cRDSCHDTHRESHOLD {
// busy spin; yield to scheduler
// and wait.
runtime.Gosched()
i = 0
}
}
}
// TryPop atomically pops a value when available and
// returns it with a boolean indicating success staus
// . It is identical to `Pop(...)` but terminates
// after `maxwait` threshold is reached and yields
// control to scheduler after `maxwait/4` spins. Useful
// when ring has large capacity.
func (r *Ring) TryPop(maxwait int) (interface{}, bool) {
var (
mask uint64 = r.size + 1
schdthreshold int = int(maxwait / 4) // yield threshold
entry unsafe.Pointer = unsafe.Pointer(&r.nodes)
rdiptr unsafe.Pointer = unsafe.Pointer(&r.rdi)
i int
index int
waitcnt int
currdi uint64
maxrdi uint64
data interface{}
dataptr unsafe.Pointer
offset unsafe.Pointer
slotptr unsafe.Pointer
)
for i < maxwait {
currdi = atomic.LoadUint64(&r.rdi)
maxrdi = atomic.LoadUint64(&r.maxrdi)
if (currdi % mask) == (maxrdi % mask) {
return nil, false
}
index = int(currdi % (mask - 1))
offset = OffsetSliceSlot(entry, index, ArchPTRSIZE)
dataptr = atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(offset)))
// NOTE
// . `interface{}` loses type information
// when used with atomics.
if dptr := (*interface{})(dataptr); dptr != nil {
data = *dptr
} else {
i++
waitcnt++
continue
}
if HasTag(dataptr) {
i++
waitcnt++
continue
}
slotptr = unsafe.Pointer(offset)
if RDCSS(
(*unsafe.Pointer)(rdiptr),
(unsafe.Pointer)(unsafe.Pointer(uintptr(currdi))),
(*unsafe.Pointer)(unsafe.Pointer(slotptr)),
(unsafe.Pointer)(dataptr),
nil,
) {
if atomic.CompareAndSwapUint64(&r.rdi, currdi, currdi+1) {
atomic.AddUint64(&r.count, ui64NMASK)
return data, true
}
}
i++
waitcnt++
if waitcnt == schdthreshold {
// NOTE:
// . fast spinning cause starvation.
runtime.Gosched()
waitcnt = 0
}
}
return nil, false
}
// - MARK: Utility section.
// roundP2 rounds the given number `v` to nearest
// power of 2.
func roundP2(v uint64) uint64 {
v--
v |= v >> 1
v |= v >> 2
v |= v >> 4
v |= v >> 8
v |= v >> 16
v |= v >> 32
v++
return v
}
// - MARK: Multi-Word Compare-and-Swap Operation section.
// RDCSSDescriptor is descriptor for Multi-Word CAS. RDCSS
// is defined as a restricted form of CAS2 operating atomi-
// cally as follow:
//
// word_t RDCSS(word_t *a1,
// word_t o1,
// word_t *a2,
// word_t o2,
// word_t n) {
// r = *a2;
// if ((r == o2) && (*a1 == o1)) *a2 = n;
// return r;
// }
type RDCSSDescriptor struct {
a1 *unsafe.Pointer // control address
o1 unsafe.Pointer // expected value
a2 *unsafe.Pointer // data address
o2 unsafe.Pointer // old value
n unsafe.Pointer // new value
}
// RDCSS performs a Double-Compare Single-Swap atomic
// operation. It attempts to change data address pointer
// `a2` to a `rdcssDescriptor` by comparing it against
// old value `o2`. When successfull, the pointer is changed
// to new value `n` or re-instiated to `o2` in case of
// unsuccessfull operation; A descriptor is active when
// referenced from `a2`. Pointer tagging is used to distinct
// `rdcssDescriptor` pointers.
func RDCSS(a1 *unsafe.Pointer, o1 unsafe.Pointer, a2 *unsafe.Pointer, o2 unsafe.Pointer, n unsafe.Pointer) bool {
// Paper: A Practical Multi-Word Compare-and-Swap Operation
// by Timothy L. Harris, Keir Fraser and Ian A. Pratt;
// University of Cambridge Computer Laboratory, Cambridge,
// UK.
var (
desc *RDCSSDescriptor = &RDCSSDescriptor{a1, o1, a2, o2, n}
dptr unsafe.Pointer
)
// add `0x1` tag
dptr, _ = TaggedPointer(unsafe.Pointer(desc), 1)
if atomic.CompareAndSwapPointer(
(*unsafe.Pointer)(unsafe.Pointer(desc.a2)),
(unsafe.Pointer)(desc.o2),
(unsafe.Pointer)(dptr),
) {
return RDCSSComplete(dptr)
}
return false
}
// RDCSSComplete performs the second stage when descriptor
// is succesfully stored in `a2`. It finishes the operation
// by swapping `a2` with target pointer `n`. The operation
// is successfull, when `a2` is not pointing to RDCSSDescriptor.
// In case of unsucessfull operation, `a2` is swapped with `o2` and
// returns false. Note, `RDCSSDescriptor` pointers have a 0x1
// tag attached to low-order bits.
func RDCSSComplete(d unsafe.Pointer) bool {
var (
desc *RDCSSDescriptor
tgdptr unsafe.Pointer = d
dptr unsafe.Pointer = Untag(d)
)
desc = (*RDCSSDescriptor)(dptr)
if (*desc.a1 == desc.o1) && atomic.CompareAndSwapPointer(
(*unsafe.Pointer)(unsafe.Pointer(desc.a2)),
(unsafe.Pointer)(unsafe.Pointer(tgdptr)),
(unsafe.Pointer)(desc.n),
) {
return true
}
if !atomic.CompareAndSwapPointer(
(*unsafe.Pointer)(unsafe.Pointer(desc.a2)),
(unsafe.Pointer)(tgdptr),
(unsafe.Pointer)(desc.o2),
) {
// TODO
// . restore ( unable to restore case )
}
return false
}
// IsRDCSSDescriptor checks whether the given pointer
// `addr` is pointong to `RDCSSDescriptor`or not. According
// to original paper ( Section 6.2 ), `RDCSSDescriptor`
// pointers can be made distinct by non-zero low-order
// bits. A pointer is pointing to `RDCSSDescriptor` iff
// `0x1` is present.
func IsRDCSSDescriptor(addr unsafe.Pointer) bool {
return HasTag(addr)
}
// - MARK: Atomics section.
// CASSliceSlot is a function that performs a CAS operation
// on a given slice slot by performing pointer arithmitic
// to find slot address. `addr` is a pointer to slice,
// `data` is a pointer to old value to be compared,
// `target` is a pointer to the new value, `index` is
// the slot number and `ptrsize` is the slice value size.
// It returns true when succesfull.
func CASSliceSlot(addr unsafe.Pointer, data unsafe.Pointer, target unsafe.Pointer, index int, ptrsize uintptr) bool {
var (
tptr *unsafe.Pointer
cptr unsafe.Pointer
)
tptr = (*unsafe.Pointer)(unsafe.Pointer(*(*uintptr)(addr) + (ptrsize * uintptr(index))))
cptr = unsafe.Pointer(tptr)
return atomic.CompareAndSwapPointer(
(*unsafe.Pointer)(unsafe.Pointer(cptr)),
(unsafe.Pointer)(unsafe.Pointer(target)),
(unsafe.Pointer)(unsafe.Pointer(data)),
)
}
// CASSliceSlotPtr is a function that performs a CAS operation
// on a given slice slot by performing pointer arithmitic
// to find slot pointer address. `addr` is a pointer to slice,
// `data` is a pointer to old value to be compared,
// `target` is a pointer to the new value, `index` is
// the slot number and `ptrsize` is the slice value size.
// It returns true when succesfull.
func CASSliceSlotPtr(addr unsafe.Pointer, data unsafe.Pointer, target unsafe.Pointer, index int, ptrsize uintptr) bool {
var (
tptr *unsafe.Pointer
cptr unsafe.Pointer
)
tptr = (*unsafe.Pointer)(unsafe.Pointer((uintptr)(addr) + (ptrsize * uintptr(index))))
cptr = unsafe.Pointer(tptr)
return atomic.CompareAndSwapPointer(
(*unsafe.Pointer)(unsafe.Pointer(cptr)),
(unsafe.Pointer)(unsafe.Pointer(target)),
(unsafe.Pointer)(unsafe.Pointer(data)),
)
}
// CASArraySlot is a function that performs a CAS operation
// on a given array slot by performing pointer arithmitic
// to find slot address. `addr` is a pointer to array,
// `data` is a pointer to old value to be compared,
// `target` is a pointer to the new value, `index` is
// the slot number and `ptrsize` is the slice value size.
// It returns true when succesfull.
func CASArraySlot(addr unsafe.Pointer, data unsafe.Pointer, target unsafe.Pointer, index int, ptrsize uintptr) bool {
var (
tptr *unsafe.Pointer
cptr unsafe.Pointer
)
tptr = (*unsafe.Pointer)(unsafe.Pointer((uintptr)(addr) + (ptrsize * uintptr(index))))
cptr = unsafe.Pointer(tptr)
return atomic.CompareAndSwapPointer((*unsafe.Pointer)(unsafe.Pointer(cptr)),
(unsafe.Pointer)(unsafe.Pointer(target)),
(unsafe.Pointer)(unsafe.Pointer(data)),
)
}
// OffsetArraySlot takes a array pointer and returns
// slot address by adding `index` times `ptrsize` bytes
// to slice data pointer.
func OffsetArraySlot(addr unsafe.Pointer, index int, ptrsize uintptr) unsafe.Pointer {
return unsafe.Pointer((*unsafe.Pointer)(unsafe.Pointer((uintptr)(addr) + (ptrsize * uintptr(index)))))
}
// OffsetSliceSlot takes a slice pointer and returns
// slot address by adding `index` times `ptrsize` bytes
// to slice data pointer.
func OffsetSliceSlot(addr unsafe.Pointer, index int, ptrsize uintptr) unsafe.Pointer {
return unsafe.Pointer(*(*uintptr)(addr) + (ptrsize * uintptr(index)))
}
// SetSliceSlot is a wrapper function that writes `d`
// to the given slice slot iff its nil and returns
// true when succesfull.
func SetSliceSlot(addr unsafe.Pointer, index int, ptrsize uintptr, d unsafe.Pointer) bool {
return CASSliceSlot(addr, d, nil, index, ptrsize)
}
// SetSliceSlotPtr is a wrapper function that writes `d`
// to the given slice slot opinter iff its nil and returns
// true when succesfull.
func SetSliceSlotPtr(addr unsafe.Pointer, index int, ptrsize uintptr, d unsafe.Pointer) bool {
return CASSliceSlotPtr(addr, d, nil, index, ptrsize)
}
// SetSliceSlotI is a wrapper function that writes `d`
// to the given slice slot iff its nil and return
// true when succesfull. Note, it differs from
// `SetSliceSlot` because `d` is written as a pointer
// to `interface{}`.
func SetSliceSlotI(addr unsafe.Pointer, index int, ptrsize uintptr, d interface{}) bool {
return CASSliceSlot(addr, unsafe.Pointer(&d), nil, index, ptrsize)
}
// SetArraySlot is a wrapper function that writes `d`
// to the given array slot iff its nil. It returns
// true when succesfull.
func SetArraySlot(addr unsafe.Pointer, index int, ptrsize uintptr, d unsafe.Pointer) bool {
return CASArraySlot(addr, d, nil, index, ptrsize)
}
// LoadArraySlot takes a array pointer and loads
// slot address by adding `index` times `ptrsize` bytes
// to slice data pointer.
func LoadArraySlot(addr unsafe.Pointer, index int, ptrsize uintptr) unsafe.Pointer {
var (
tptr *unsafe.Pointer
)
tptr = (*unsafe.Pointer)(unsafe.Pointer((uintptr)(addr) + (ptrsize * uintptr(index))))
return atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(tptr)))
}
// LoadSliceSlot takes a slice pointer and loads
// slot address by adding `index` times `ptrsize` bytes
// to slice data pointer.
func LoadSliceSlot(addr unsafe.Pointer, index int, ptrsize uintptr) unsafe.Pointer {
var (
bin *unsafe.Pointer
)
bin = (*unsafe.Pointer)(unsafe.Pointer(*(*uintptr)(addr) + (ptrsize * uintptr(index))))
return atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(bin)))
}
// PopArraySlot is a wrapper function that pops
// `index` slot of array iff its nil. It returns
// a pointer and true when succesfull.
func PopArraySlot(addr unsafe.Pointer, index int, ptrsize uintptr) (unsafe.Pointer, bool) {
var (
slot unsafe.Pointer = LoadArraySlot(addr, index, ptrsize)
)
if !CASArraySlot(addr, nil, slot, index, ptrsize) {
return nil, false
}
return slot, true
}
// PopSliceSlot is a wrapper function that pops
// `index` slot of slice iff its nil. It returns
// a pointer and true when succesfull.
func PopSliceSlot(addr unsafe.Pointer, index int, ptrsize uintptr) (unsafe.Pointer, bool) {
var (
slot unsafe.Pointer = LoadSliceSlot(addr, index, ptrsize)
)
if !CASSliceSlot(addr, nil, slot, index, ptrsize) {
return nil, false
}
return slot, true
}
// CompareAndSwapPointerTag performs CAS operation
// and swaps `source` to `source` with new tag
// when comparision is successfull. It reutrns a
// pointer and boolean to to indicate its success.
func CompareAndSwapPointerTag(source unsafe.Pointer, oldtag uint, newtag uint) (unsafe.Pointer, bool) {
if oldtag > cArchMAXTAG || newtag > cArchMAXTAG {
panic(EPTRINVALT)
}
var (
sraw unsafe.Pointer = Untag(source)
sptr unsafe.Pointer
target unsafe.Pointer
)
sptr, _ = TaggedPointer(sraw, oldtag)
target, _ = TaggedPointer(sraw, newtag)
if atomic.CompareAndSwapPointer(
(*unsafe.Pointer)(unsafe.Pointer(&sptr)),
(unsafe.Pointer)(source),
(unsafe.Pointer)(target),
) {
return target, true
}
return nil, false
}
// - MARK: Pointer-Tagging section.
// GetTag returns the tag value from
// low-order bits.
func GetTag(ptr unsafe.Pointer) uint {
return uint(uintptr(ptr) & uintptr(cArchMAXTAG))
}
// TaggedPointer is a function for tagging pointers.
// It attaches `tag` value to the pointer `ptr` iff
// `tag` <= `ArchMAXTAG` and returns the tagged pointer
// along with error set to `nil`. It panics when
// `tag` > `ArchMAXTAG`, I do too! It's like getting
// headshot by a champagne cork.
func TaggedPointer(ptr unsafe.Pointer, tag uint) (unsafe.Pointer, error) {
if tag > cArchMAXTAG {
// flip the table, not this time!
panic(EPTRINVALT)
}
return unsafe.Pointer(uintptr(ptr) | uintptr(tag)), nil
}
// Untag is a function for untagging pointers. It
// returns a `unsafe.Pointer` with low-order bits
// set to 0.
func Untag(ptr unsafe.Pointer) unsafe.Pointer {
return unsafe.Pointer(uintptr(ptr) & cArchPTRMASK)
}
// HasTag returns whether the given pointer `ptr`
// is tagged.
func HasTag(ptr unsafe.Pointer) bool {
return GetTag(ptr)&cArchMAXTAG > 0
}