-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdesign.puml
151 lines (129 loc) · 3.56 KB
/
design.puml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
@startuml
'https://plantuml.com/class-diagram
skinparam classAttributeIconSize 0
abstract class RandomForest {
-num_trees : int
-min_size : int
-max_depth: int
-ratio_samples : float
-num_random_features : float
-multiprocessing : boolean
-extra_trees : boolean
+fit (x: float[][], y: float[])
+predict (X : float[][]) : float[]
+feature_importance(): dictionary
+print_trees():
-predict_standard (X : float[][]): float[]
-predict_multiprocessing (X : float[][]): float[]
-make_decision_trees_standard (dataset : Dataset)
-make_decision_trees_multiprocessing (dataset : Dataset)
-target_predict (x : float[] ) : int
-target_fit (dataset : Dataset) : Node
-make_node (dataset : Dataset, depth : int) : Node
-make_parent_or_leaf (dataset : Dataset, depth : int) : Node
//-make_leaf (dataset : Dataset, depth : int) : Leaf//
-best_split (idx_features : int[], dataset : Dataset) : Dataset[2]
-cart_cost (left_dataset : Dataset, right_dataset : Dataset) : float
//-make_impurity(name_impurity : String) : ImpurityMeasures//
//-combine_predictions(predictions: float[]):float//
}
class RandomForestClassifier extends RandomForest{
-make_impurity(name_impurity : String): ImpurityMeasures
-combine_predictions(predictions: float[]) : float
-make_leaf(dataset : Dataset): Leaf
}
class RandomForestRegressor extends RandomForest{
-make_impurity(name_impurity : String): ImpurityMeasures
-combine_predictions(predictions: float[]) : float
-make_leaf(dataset : Dataset): Leaf
}
class IsolationForest extends RandomForest{
-train_size : int
-test_size : int
+fit(X : float[][])
+predict(X : float[][]) : float[]
-combine_predictions(predictions: float[]) : float
-make_leaf(dataset : Dataset): Leaf
-best_split(idx_features : int[], dataset: Dataset) : Dataset[2]
}
interface Visitor{
//visit_parent(parent: Parent)://
//visit_leaf(leaf: Leaf)//
}
class FeatureImportance implements Visitor{
-occurrences: dictionary
+visit_parent(parent: Parent)
+visit_leaf(leaf: Leaf)
}
class PrinterTree implements Visitor{
-depth: int
+visit_parent(parent: Parent)
+visit_leaf(leaf: Leaf)
}
interface ImpurityMeasures{
//+compute_impurity(prob : float[]) : float//
}
class Gini implements ImpurityMeasures {
+comupte_impurity(dataset: Dataset()) : float
}
class Entropy implements ImpurityMeasures {
+comupte_impurity(dataset: Dataset()) : float
}
class SumSquareError implements ImpurityMeasures{
+comupte_impurity(dataset: Dataset()) : float
}
class Dataset {
-X: float [][]
-y: int[]
-num_samples : int
-num_features : int
+random_sampling(ratio_samples : float) : Dataset
+split(idx : int, value : double) : Dataset[2]
+most_frequent_label() : int
+probability() : float[]
+mean_value(): float
}
interface Node {
//+predict(x:float[]) : int//
//+accept_visitor(visitor: Visitor) : int//
}
class Leaf implements Node{
-value_or_label_or_depth: float
+predict(x : float[]): float
+accept_visitor(visitor : Visitor)
}
class Parent implements Node{
-idx_features : int
-value : float
-predict(x: float[]) : float
+accept_visitor(visitor : Visitor)
}
note right of Leaf::predict
return label
end note
note left of Parent::predict
if x[feature] <= value:
return left_child.predict(x)
else:
return right_child.predict(x)
end note
note left of Node
design pattern
**composite**
end note
note right of ImpurityMeasures
design pattern
**strategy**
end note
note right of Visitor
design pattern
**visitor**
end note
note right of RandomForest
design pattern
**template method**
end note
Parent --> "2" Node: left_child, right_child
RandomForest *--> "1" ImpurityMeasures : impurity_measure
RandomForest *--left--> "1.." Node: decision_trees
@enduml