-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathobject_capsule_ae.py
42 lines (36 loc) · 1.59 KB
/
object_capsule_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import torch.nn as nn
import torch
from scae.modules import attention as _attention
from scae.modules import capsule as _capsule
from attrdict import AttrDict
import scae.util.math as math
import torch.nn.functional as F
import torch.distributions as D
import collections
class ObjectCapsule(nn.Module):
"""Decoder."""
def __init__(self, n_caps, n_caps_dims, n_votes, **capsule_kwargs):
super(ObjectCapsule, self).__init__()
self._n_caps = n_caps
self._n_caps_dims = n_caps_dims
self._n_votes = n_votes
self._capsule_kwargs = capsule_kwargs
self.build()
def build(self):
self.capsule = _capsule.CapsuleLayer(self._n_caps, self._n_caps_dims,
self._n_votes, **self._capsule_kwargs)
def forward(self, h, x, presence=None):
batch_size = int(x.shape[0])
self.vote_shape = [batch_size, self._n_caps, self._n_votes, 6]
res = self.capsule(h)
res.vote = torch.reshape(res.vote[..., :-1, :], self.vote_shape)
votes, scale, vote_presence_prob = res.vote, res.scale, res.vote_presence
self.likelihood = _capsule.CapsuleLikelihood(votes, scale,
vote_presence_prob)
ll_res = self.likelihood(x, presence)
res.update(ll_res._asdict())
caps_presence_prob = torch.max(torch.reshape(vote_presence_prob,
[batch_size, self._n_caps, self._n_votes]), dim=2)
res.caps_presence_prob = caps_presence_prob
return res