-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_utils.py
251 lines (198 loc) · 9.34 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import matplotlib.pyplot as plt
import matplotlib
import torch
import numpy as np
import cv2 as cv
from PIL import Image
import os
"""Functions Needed in train_utils.py"""
def normalize(x):
return (x - x.min()) / (x.max() - x.min())
def convert2uint8(x):
return (x * 255).astype(np.uint8)
def save_numpy_array(image_array, filename="image.jpg"):
"""Save a NumPy array with shape (H x W x C) as an image."""
# if shape is (H,,W) convert it to (H,W,1)
if image_array.ndim == 2:
image_array = image_array[:,:,np.newaxis]
# if its a binary image, convert it to 3 channels
if image_array.shape[-1] == 1:
image_array = np.concatenate([image_array]*3, axis = -1)
image_array = convert2uint8(normalize(image_array))
#print(f"Saving image of shape {image_array.shape} to {filename}")
# Convert the NumPy array to a PIL Image object
image = Image.fromarray(image_array)
# Save the image as a JPEG file
image.save(filename)
def save_s1s2_tensors_plot(tensors, names, n_rows, n_cols, filename,
fig_size, bands_to_plot = [2,1,0], title = None, just_show = False,img_indx=None, save_raw_images_folder = None):
"""
Saves a grid of PyTorch tensors as an image file.
Parameters
---
tensors (List[torch.Tensor]): List of PyTorch tensors to be plotted, if number of channels of a tensor is more than 3, only the bands specified in `bands_to_plot` will be ploted as rgb
names (Optional[List[str]]): List of names for each tensor. If None,
no names will be displayed.
n_rows (int): Number of rows in the output grid.
n_cols (int): Number of columns in the output grid.
filename (str): Name of the output image file.
fig_size (Tuple[int, int]): Size of the output image in inches.
change_map_name (str): Name of the tensor containing the change map.
Default is 'change map'.
bands_to_plot (list): the index of 3 bands to be ploted in case of tensor having more that 3 bands.
Chnage Map
---
converts the change map into 3 bands where the Red band is the change in RGB values, Green band is
the change in NIR values and Blue band is the change in SWIR valuess.
Returns
---
None
"""
# checking ig save_raw_images_folder exists else create it
if save_raw_images_folder:
if not os.path.exists(save_raw_images_folder):
os.makedirs(save_raw_images_folder)
tensors = [tensor.to(torch.float32) for tensor in tensors]
fig, axs = plt.subplots(n_rows, n_cols, figsize=fig_size)
fig.suptitle(title) if title is not None else None
for i in range(n_rows):
for j in range(n_cols):
idx = i * n_cols + j
if idx >= len(tensors):
break
tensor = tensors[idx].to(torch.float32)
if torch.min(tensor) < 0:
tensor = (tensor + 1)/2
name = names[idx] if names is not None else None
if tensor.ndim > 2 and tensor.shape[0] > 1:
if "change" in name:
tensor = combine_cm_bands(tensor)
array = tensor[[0,1,2],:,:].permute(1,2,0).cpu().numpy()
else:
array = tensor[bands_to_plot,:,:].permute(1,2,0).cpu().numpy()
array = stretch_img(array) # we don't want to stretch the change map, since it will be misleading.
axs[i][j].imshow(array)
axs[i][j].set_title(name)
else:
array = tensor[0].cpu().numpy()
axs[i][j].imshow(array) if "change" in name else axs[i][j].imshow(array,cmap='gray')
axs[i][j].set_title(name)
if save_raw_images_folder:
if array.ndim == 2:
array = array[:,:,np.newaxis]
if array.ndim > 2 and array.shape[2] ==1:
array = convert2uint8(normalize(array))
array = cv.applyColorMap(array, cv.COLORMAP_VIRIDIS) if "change" in name else array
array = cv.cvtColor(array, cv.COLOR_BGR2RGB)
if img_indx:
save_numpy_array(array, filename=f"{save_raw_images_folder}/img{img_indx}_{name}.jpg")
else:
save_numpy_array(array, filename=f"{save_raw_images_folder}/{name}.jpg")
axs[i][j].set_xticks([])
axs[i][j].set_yticks([])
plt.tight_layout()
if just_show:
plt.show()
else:
plt.savefig(filename, bbox_inches='tight')
matplotlib.pyplot.close()
import torch
def combine_cm_bands(input_tensor):
"""
Takes a PyTorch tensor of shape [6, 256, 256] and returns a tensor of shape
[3, 256, 256] where the first band is the max of bands 0, 1, and 2, the
second band is band 3, and the third band is the max of bands 4 and 5.
Usage
---
The Change map is RGB NIR SWIR1 SWIR2 after this combination
the first band is the max of RGB, the second band is NIR and the third band is the max of SWIR1 and SWIR2
* Red is the change in RGB values
* seond band (green) corresponds to vegetaiton change
* Blue is the cahnge in SWIR values
Parameters
---
input_tensor (torch.Tensor): Input tensor of shape [6, 256, 256]
Returns
---
torch.Tensor: Output tensor of shape [3, 256, 256]
"""
max_band_0_1_2 = torch.max(input_tensor[:3], dim=0, keepdim=True)[0]
band_3 = input_tensor[3:4]
max_band_4_5 = torch.max(input_tensor[4:], dim=0, keepdim=True)[0]
output_tensor = torch.cat([max_band_0_1_2, band_3, max_band_4_5], dim=0)
return output_tensor
def stretch_img(img, clipLimit = 0.1 , tileGridSize=(32,32) ):
"""
Enhance the contrast of an RGB image using Contrast Limited Adaptive Histogram Equalization (CLAHE)
and convert it to a stretched RGB image using the HSV color space.
Parameters
-----------
img : numpy.ndarray
A 3-dimensional numpy array representing the input BGR image. - Band Blue should be index 0 and band Red should be index 2
clipLimit : int, optional (default=20)
The threshold value for contrast limiting.
tileGridSize : tuple, optional (default=(16,16))
The size of the grid used to divide the image into small tiles for local histogram equalization.
Returns
--------
numpy.ndarray
A 3-dimensional numpy array representing the stretched RGB image with enhanced contrast.
"""
img = img[:,:,[2,1,0]] # convert to bgr
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, dtype=cv.CV_8U)
hsv_img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
h, s, v = hsv_img[:,:,0], hsv_img[:,:,1], hsv_img[:,:,2]
clahe = cv.createCLAHE(clipLimit, tileGridSize)
v = clahe.apply(v) #stretched histogram for showing the image with better contrast - its not ok to use it for scientific calculations
hsv_img = np.dstack((h,s,v))
# NOTE: HSV2RGB returns BGR instead of RGB
bgr_stretched = cv.cvtColor(hsv_img, cv.COLOR_HSV2RGB)
# if the valuse are float, plt will have problem showing them
bgr_stretched = bgr_stretched.astype('uint8')
return bgr_stretched
def plot_np_images(images, names, plot_name,folder, subplot_shape,
fig_size= (10,10), subplot_spacing=(0.2, 0.2),
save_path=None, img_format=".jpg", no_plot=False):
"""
Plots a list of numpy images with shape (h,w,3) or (h,w,1) and a list of names in a subplot.
Parameters:
images (list): a list of numpy images with shape (h,w,3) or (h,w,1)
names (list): a list of names for each image in the images list
plot_name (str): a name for the overall plot
subplot_shape (tuple): a tuple specifying the shape of the subplot (e.g. (2,3) for a 2x3 grid)
subplot_spacing (tuple): a tuple specifying the horizontal and vertical spacing between subplots
save_path (str): a file path to save the plot. If None, the plot will be displayed using plt.show()
img_format (str): the format to save the images in (e.g. ".jpg", ".png", etc.)
"""
# Create a figure object and subplots
fig, axs = plt.subplots(subplot_shape[0], subplot_shape[1], figsize=fig_size)
# Adjust the spacing between subplots
fig.subplots_adjust(wspace=subplot_spacing[0], hspace=subplot_spacing[1])
# Loop through each image and its corresponding name
for name, image, ax in zip(names, images, axs.flatten()):
ax.imshow(image)
ax.set_title(name)
ax.set_xticks([])
ax.set_yticks([])
save_numpy_array(image, f"{folder}/{name}{img_format}")
# Add a title to the plot
fig.suptitle(plot_name)
# Save the plot if a file path is provided
if save_path:
fig.savefig(save_path)
plt.close()
else:
if no_plot:
plt.close()
else:
plt.show()
if __name__ == "__main__":
from skimage import io
img = io.imread("E:\\s1s2\\s1s2_patched_light\\s1s2_patched_extra_light\\2021\\s2_imgs\\test\\014_brasilia_r00_c01.tif")
print(img.shape)
img = img[[2,1,0],:,:]
img = img.swapaxes(0,2)
img = img.swapaxes(0,1)
img = stretch_img(img, clipLimit = 0.1 , tileGridSize=(32,23))
plt.imshow(img)
plt.show()