-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
307 lines (257 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
from torch.utils.data import Dataset
import torch.nn.functional as F
from glob import glob
from skimage import io
import os
from torchvision import datasets, transforms
import matplotlib
import os
import gc
import random
from datetime import date, datetime
import json
import pprint
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from temporalgan.gen_v1_1 import Generator as GeneratorV1_1
from temporalgan.gen_v1_2 import Generator as GeneratorV1_2
from temporalgan.gen_v1_3 import Generator as GeneratorV1_3
from temporalgan.gen_v1_4 import Generator as GeneratorV1_4
from temporalgan.gen_v1_5 import Generator as GeneratorV1_5
from temporalgan.gen_v1_6 import Generator as GeneratorV1_6
from temporalgan.gen_v1_7 import Generator as GeneratorV1_7
from temporalgan.disc_v2 import Discriminator as DiscriminatorV2
from temporalgan.disc_v1 import Discriminator as DiscriminatorV1
from eval_metrics.loss_function import WeightedL1Loss, reverse_map
from changedetection.utils import get_column_values
from dataset.data_loaders import *
from config import *
from eval_metrics import ssim
from eval_metrics.psnr import wpsnr
wssim = ssim.WSSIM(data_range=1.0)
from dataset.utils.utils import TextColors as TC
from dataset.utils.plot_utils import plot_s1s2_tensors, save_s1s2_tensors_plot
from train_utils import *
import argparse
parser = argparse.ArgumentParser(description='TemporalGAN Training')
parser.add_argument('--no_two_way_dataset', '-tw', action='store_false', help='Dont use two-way dataset - This modifies the dataloader to use the T1 and T2 dataset in both ways.')
parser.add_argument('--no_input_change_map', '-ic', action='store_false', help='Dont use input change map. If this switch is on, the S2_change_map will not be a part of input.')
parser.add_argument('--learning_rate', '-lr', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--batch_size', '-bs', type=int, default=4, help='Batch size')
parser.add_argument('--num_workers', '-nw', type=int, default=2, help='Number of workers')
parser.add_argument('--image_size', '-is', type=int, default=256, help='Image size - No effect on the code, just to be in the log file')
parser.add_argument('--no_weighted_loss', '-wl', action='store_false', help='Dont use weighted loss. If this switch is on, the L1 loss will be used instead of the weighted L1 loss.')
parser.add_argument('--changed_l1_weight', '-clw', type=int, default=5, help='Changed L1 weight')
parser.add_argument('--num_epochs', '-ne', type=int, default=10, help='Number of epochs')
parser.add_argument('--load_model', '-lm', action='store_true', help='Load model')
parser.add_argument('--save_model', '-sm', action='store_true', help='Save model')
parser.add_argument('--save_model_every_epoch', '-sme', type=int, default=10, help='Save model every epoch')
parser.add_argument('--run_test_every_epoch', '-rte', type=int, default=1, help='Run test every epoch')
parser.add_argument('--dont_save_example_plots', '-sep', action='store_false', help='Dont save example plots')
parser.add_argument('--examples_to_plot', '-etp', nargs='+', type=int, default=[1, 2], help='Examples to plot after training is done - if you want to plot both FTS and BTS, add the size of the dataset to the index of desired image.')
parser.add_argument('--random_seed', '-rs', type=int, default=None, help='Random seed - optional for reproducibility')
parser.add_argument('--gen_version', '-gv', type=str, default='1.3', help='Generator Version - Read each moduel in ./temporalgan/gen_v* for more info')
args = parser.parse_args()
TWO_WAY_DATASET = args.two_way_dataset
INPUT_CHANGE_MAP = args.input_change_map
LEARNING_RATE = args.learning_rate
BATCH_SIZE = args.batch_size
NUM_WORKERS = args.num_workers
IMAGE_SIZE = args.image_size
WEIGHTED_LOSS = args.weighted_loss
CHANGED_L1_WEIGHT = args.changed_l1_weight
NUM_EPOCHS = args.num_epochs
LOAD_MODEL = args.load_model
SAVE_MODEL = args.save_model
SAVE_MODEL_EVERY_EPOCH = args.save_model_every_epoch
RUN_TEST_EVERY_EPOCH = args.run_test_every_epoch
SAVE_EXAMPLE_PLOTS = args.save_example_plots
EXAMPLES_TO_PLOT = args.examples_to_plot
RANDOM_SEED = args.random_seed
GEN_VERSION = args.gen_version
S2_INCHANNELS = 12 if INPUT_CHANGE_MAP else 6
S1_INCHANNELS = 7 if INPUT_CHANGE_MAP else 1
if RANDOM_SEED is not None:
torch.manual_seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
hard_test_names = get_column_values(hard_test_csv_path, "name")
# Format the date and time
now = datetime.now()
start_string = now.strftime("%Y-%m-%d %H:%M:%S")
file_name = now.strftime("D_%Y_%m_%d_T_%H_%M")
# print("Current Date and Time:", start_string)
transform = transforms.Compose([S2S1Normalize(),myToTensor()])
hard_test_dataset = Sen12DatasetHardTest(s1_t1_dir=s1_t1_dir_test,
s2_t1_dir=s2_t1_dir_test,
s1_t2_dir=s1_t2_dir_test,
s2_t2_dir=s2_t2_dir_test,
hard_test_names=hard_test_names,
transform=transform,
two_way=TWO_WAY_DATASET)
hard_test_loader = DataLoader(
hard_test_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS,
)
def train():
disc = DiscriminatorV1(s2_in_channels=S2_INCHANNELS, s1_in_channels=S1_INCHANNELS).to(DEVICE)
# gen = GeneratorV2(s2_in_channels=S2_INCHANNELS, s1_in_channels= S1_INCHANNELS, features=64,pam_downsample=2).to(DEVICE)
if GEN_VERSION == "1.1":
gen = GeneratorV1_1(s2_in_channels=S2_INCHANNELS, s1_in_channels= S1_INCHANNELS, features=64).to(DEVICE)
elif GEN_VERSION == "1.2":
gen = GeneratorV1_2(s2_in_channels=S2_INCHANNELS, s1_in_channels= S1_INCHANNELS, features=64).to(DEVICE)
elif GEN_VERSION == "1.3":
gen = GeneratorV1_3(s2_in_channels=S2_INCHANNELS, s1_in_channels= S1_INCHANNELS, features=64).to(DEVICE)
elif GEN_VERSION == "1.5":
gen = GeneratorV1_5(s2_in_channels=S2_INCHANNELS, s1_in_channels= S1_INCHANNELS, features=64).to(DEVICE)
elif GEN_VERSION == "1.6":
gen = GeneratorV1_6(s2_in_channels=S2_INCHANNELS, s1_in_channels= S1_INCHANNELS, features=64).to(DEVICE)
else:
raise Exception("Wrong generator version!")
opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999),)
opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
BCE = nn.BCEWithLogitsLoss()
if WEIGHTED_LOSS:
L1_LOSS = WeightedL1Loss(change_weight=CHANGED_L1_WEIGHT)
else:
L1_LOSS = nn.L1Loss()
if LOAD_MODEL:
load_checkpoint(
CHECKPOINT_GEN, gen, opt_gen, LEARNING_RATE,
)
load_checkpoint(
CHECKPOINT_DISC, disc, opt_disc, LEARNING_RATE,
)
transform = transforms.Compose([S2S1Normalize(),myToTensor(dtype=torch.float32)])
train_dataset = Sen12Dataset(s1_t1_dir=s1_t1_dir_train,
s2_t1_dir=s2_t1_dir_train,
s1_t2_dir=s1_t2_dir_train,
s2_t2_dir=s2_t2_dir_train,
transform=transform,
two_way=TWO_WAY_DATASET)
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS,
)
g_scaler = torch.cuda.amp.GradScaler()
d_scaler = torch.cuda.amp.GradScaler()
# val_dataset = MapDataset(root_dir=VAL_DIR)
# val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
validation_results = []
for epoch in range(1, NUM_EPOCHS+1):
print("\n\n" , end="")
print(TC.BOLD_BAKGROUNDs.PURPLE, f"Epoch: {epoch}", TC.ENDC)
print(TC.OKCYAN, " Training:", TC.ENDC)
train_fn(
disc, gen, train_loader, opt_disc, opt_gen,
L1_LOSS, BCE, g_scaler, d_scaler, weighted_loss= WEIGHTED_LOSS,
cm_input=INPUT_CHANGE_MAP, grad_clip=False)
print(TC.HIGH_INTENSITYs.YELLOW, " Validation:", TC.ENDC)
hard_eval_validation_all = eval_fn(gen, hard_test_loader, wssim, wpsnr, hard_test = True, loader_part="all", in_change_map=INPUT_CHANGE_MAP)
validation_results.append(hard_eval_validation_all)
if SAVE_MODEL and epoch % SAVE_MODEL_EVERY_EPOCH == 0:
save_checkpoint(epoch,gen, opt_gen, filename=CHECKPOINT_GEN)
save_checkpoint(epoch,disc, opt_disc, filename=CHECKPOINT_DISC)
if SAVE_EXAMPLE_PLOTS:
for img_i in EXAMPLES_TO_PLOT:
save_some_examples(gen, train_dataset, epoch, folder="train_evaluation_plots",cm_input=INPUT_CHANGE_MAP, img_indx=img_i)
gc.collect()
torch.cuda.empty_cache()
return gen, validation_results
def main():
#matplotlib.use('Agg') # This refrains matplot lib form showing the plotted resualts below the cell
gen_model, validation_results = train()
plot_metrics(validation_results, save_path=f"results/RUN_{file_name}.png")
transform = transforms.Compose([S2S1Normalize(),myToTensor()])
test_dataset = Sen12Dataset(s1_t1_dir=s1_t1_dir_test,
s2_t1_dir=s2_t1_dir_test,
s1_t2_dir=s1_t2_dir_test,
s2_t2_dir=s2_t2_dir_test,
transform=transform,
two_way=TWO_WAY_DATASET,
binary_s1cm=False
)
test_loader = DataLoader(
test_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS,
)
print("\n\n")
print(TC.BOLD_BAKGROUNDs.ORANGE, "Evaluating all dataset using soft changemaps.", TC.ENDC)
print("Whole test dataset:")
whole_test_eval_results_all = eval_fn(gen_model, test_loader, wssim, wpsnr, hard_test = True, in_change_map=INPUT_CHANGE_MAP)
print("First half of test dataset:")
whole_test_eval_results_first_half = eval_fn(gen_model, test_loader, wssim, wpsnr, hard_test = True,loader_part='first', in_change_map=INPUT_CHANGE_MAP)
print("Second half of test dataset:")
whole_test_eval_results_second_half = eval_fn(gen_model, test_loader, wssim, wpsnr, hard_test = True,loader_part='second', in_change_map=INPUT_CHANGE_MAP)
print(TC.BOLD_BAKGROUNDs.ORANGE, "Evaluating selected hard test dataset using hard changemaps.", TC.ENDC)
print("All hard test dataset:")
hard_eval_results_all = eval_fn(gen_model, hard_test_loader, wssim, wpsnr, hard_test = True, loader_part="all", in_change_map=INPUT_CHANGE_MAP)
print("First half of hard test dataset:")
hard_eval_results_first_half = eval_fn(gen_model, hard_test_loader, wssim, wpsnr, hard_test = True, loader_part="first", in_change_map=INPUT_CHANGE_MAP)
print("Second half of hard test dataset:")
hard_eval_results_second_half = eval_fn(gen_model, hard_test_loader, wssim, wpsnr, hard_test = True, loader_part="second", in_change_map=INPUT_CHANGE_MAP)
# Format the date and time
now = datetime.now()
finish_string = now.strftime("%Y-%m-%d %H:%M:%S")
print("Finish Date and Time:", finish_string)
print("File Name:", file_name)
log_json = {}
log_json["Time"] = {"Start": start_string, "Finish": finish_string}
log_json["GEN_VERSION"] = GEN_VERSION
log_json["TWO_WAY_DATASET"] = TWO_WAY_DATASET
log_json["INPUT_CHANGE_MAP"] = INPUT_CHANGE_MAP
log_json["S2_INCHANNELS"] = S2_INCHANNELS
log_json["S1_INCHANNELS"] = S1_INCHANNELS
log_json["LEARNING_RATE"] = LEARNING_RATE
log_json["BATCH_SIZE"] = BATCH_SIZE
log_json["NUM_WORKERS"] = NUM_WORKERS
log_json["IMAGE_SIZE"] = IMAGE_SIZE
log_json["WEIGHTED_LOSS"] = WEIGHTED_LOSS
log_json["L1_LAMBDA"] = L1_LAMBDA
log_json["CHANGED_L1_WEIGHT"] = CHANGED_L1_WEIGHT
log_json["NUM_EPOCHS"] = NUM_EPOCHS
log_json["LOAD_MODEL"] = LOAD_MODEL
log_json["SAVE_MODEL"] = SAVE_MODEL
log_json["SAVE_MODEL_EVERY_EPOCH"] = SAVE_MODEL_EVERY_EPOCH
log_json["SAVE_EXAMPLE_PLOTS"] = SAVE_EXAMPLE_PLOTS
log_json["EXAMPLES_TO_PLOT"] = EXAMPLES_TO_PLOT
log_json["CHECKPOINT_DISC"] = CHECKPOINT_DISC
log_json["CHECKPOINT_GEN"] = CHECKPOINT_GEN
log_json["RANDOM_SEED"] = RANDOM_SEED
log_json["HardEval"] = {"Hard All": hard_eval_results_all,
"Hard First Half": hard_eval_results_first_half,
"Hard Second Half": hard_eval_results_second_half}
log_json["FullEval"] = {"Full Test Dataset": whole_test_eval_results_all,
"First Half Test Dataset": whole_test_eval_results_first_half,
"Second Half Test Dataset": whole_test_eval_results_second_half}
psnr_list, cw_psnr_list, rcwpsnr_list, ssim_list, cwssim_list, rcwssim_list = separate_lists(validation_results)
log_json["Validation Lists"] = {"PSNR": psnr_list, "CWPSNR": cw_psnr_list, "RCWPSNR": rcwpsnr_list, "SSIM": ssim_list, "CWSSIM": cwssim_list, "RCWSSIM": rcwssim_list}
with open(f"results/RUN_{file_name}.json", "w") as fp:
json.dump(log_json, fp, indent=4)
# Redeclare the test dataset with binary_s1cm = False for plotting
transform = transforms.Compose([S2S1Normalize(),myToTensor()])
test_dataset = Sen12Dataset(s1_t1_dir=s1_t1_dir_test,
s2_t1_dir=s2_t1_dir_test,
s1_t2_dir=s1_t2_dir_test,
s2_t2_dir=s2_t2_dir_test,
transform=transform,
two_way=TWO_WAY_DATASET,
binary_s1cm=False
)
if EXAMPLES_TO_PLOT is not None:
for indx in EXAMPLES_TO_PLOT:
save_some_examples(gen_model, test_dataset, NUM_EPOCHS,
folder="test_evaluation_plots",cm_input=INPUT_CHANGE_MAP,
img_indx=indx, just_show = True,save_raw_images_folder="raw_imgs/", fig_size=(20,20))
if __name__ == "__main__":
print("Running on:", DEVICE)
main()
print("Done!")