forked from namin/llm-verified-with-monte-carlo-tree-search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ppo.py
65 lines (51 loc) · 1.71 KB
/
run_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import ppo
import torch
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import score_func, can_be_solution
from prompts import prompt, expansion_count, min_lines, check_fun
class GenNode:
def __init__(self, text, gens):
self.text = text
self.gens = gens
montecarlo = MonteCarlo(Node(GenNode(prompt, [])))
def reinforce(gens, reward):
rewards = [torch.tensor(reward)]
for (query_tensors, response_tensors) in gens:
ppo.trainer_step(query_tensors, response_tensors, rewards)
def generate_complete(text, montecarlo, gens):
(text, gen) = ppo.generate(text)
gens.append(gen)
score = score_func(text)
if score is not None:
reinforce(gens, score)
if score < 0:
return None
else:
node = Node(GenNode(text, gens))
if can_be_solution(text, min_lines, check_fun):
montecarlo.solution = node
return node
else:
return generate_complete(text, montecarlo, gens)
def child_finder(node, montecarlo):
child = generate_complete(node.state.text, montecarlo, [])
if child is None:
node.update_win_value(-1)
else:
node.add_child(child)
child.update_win_value(1)
child.update_policy_value(1)
retry_child = Node(GenNode(node.state.text, []))
node.add_child(retry_child)
retry_child.update_policy_value(0.2)
montecarlo.child_finder = child_finder
montecarlo.simulate(expansion_count)
if montecarlo.solution:
print('CHOSEN SOLUTION')
print(montecarlo.solution.state.text)
node = montecarlo.solution
while node:
reinforce(node.state.gens, 10.0)
node = node.parent
ppo.save()