-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
35 lines (28 loc) · 1.01 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import argparse
import cv2
import numpy as np
import torch
from backbones import get_model
@torch.no_grad()
def inference(weight, name, img):
if img is None:
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8)
else:
img = cv2.imread(img)
img = cv2.resize(img, (112, 112))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float()
img.div_(255).sub_(0.5).div_(0.5)
net = get_model(name, fp16=False)
net.load_state_dict(torch.load(weight))
net.eval()
feat = net(img).numpy()
print(feat)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training')
parser.add_argument('--network', type=str, default='r50', help='backbone network')
parser.add_argument('--weight', type=str, default='')
parser.add_argument('--img', type=str, default=None)
args = parser.parse_args()
inference(args.weight, args.network, args.img)