Actuator location and design are important design variables in controller synthesis for distributed parameter systems. Finding the best actuator location to control a distributed parameter system can significantly reduce the cost of the control and improve its effectiveness. From a theoretical point of view, the existence of an optimal actuator location has been discussed in the literature for linear partial differential equations (PDE's). It was proven that an optimal actuator location exists for linear-quadratic control. Conditions under which using approximations in optimization yield the optimal location are also established.
Similar results have been obtained for
Railway tracks are rested on ballast which are known for exhibiting nonlinear viscoelastic behavior. If a track beam is made of a Kelvin-Voigt material, then the railway track model will be a semi-linear partial differential equation on
\begin{flalign}\notag \begin{cases} \begin{aligned} &\rho a \frac{\partial^2 w}{\partial t^2}+\frac{\partial}{\partial \xi^2}(EI\frac{\partial^2 w}{\partial \xi^2}+C_d\frac{\partial ^3 w}{\partial \xi^2 \partial t})+\mu \frac{\partial w}{\partial t}+kw+\alpha w^3=b(\xi;r)u(t), &\xi&\in(0,\ell),\[2mm] &w(\xi,0)=w_0(\xi), \quad \frac{\partial w}{\partial t}(\xi,0)=v_0(\xi), &\xi&\in(0,\ell),\[2mm] &w(0,t)=w(\ell,t)=0,&t&\ge 0,\[2mm] &EI\frac{\partial ^2w}{\partial \xi^2}(0,t)+C_d\frac{\partial ^3w}{\partial \xi^2\partial t}(0,t)=EI\frac{\partial^2 w}{\partial \xi^2}(\ell,t)+C_d\frac{\partial ^3w}{\partial \xi^2\partial t}(\ell,t)=0, &t&\ge 0. \end{aligned} \end{cases} \end{flalign}
where the positive constants
In this section, we apply the results of previous sections to compute an optimal control and actuator location for the vibration suppression of the track. As discussed in chapter 3, the problem of finding the best control and actuator location is the optimization problem \begin{equation*} \begin{cases} \min&J(u,r;x_0)\ \text{s.t.}&\dot{x}(t)=Ax(t)+F(x(t))+B(r)u(t), \quad \forall t\in(0,T],\ &x(0)=x_0 \end{cases} \end{equation*}
The optimality conditions use the derivative of the cost function with respect to the input and the actuator location. In that, the adjoint of the IVP needs to be calculated. The adjoint equation is the following final value problem (FVP): \begin{equation*} \dot{p}(t)=-(A^+F'^_x(t))p(t)-Qx(t),\quad p(T)=0 \end{equation*}
For every
\begin{equation*} \begin{cases} D_u J(u,r;x_0)&=B^*(r)p(t)+R u(t),\ D_{r}J(u,r,x_0)&=\int_0^T(B'_{r}u(s))^p(s), ds. \end{cases} \end{equation}
Several optimization algorithms were suggested in the literature for solving PDE-constrained optimization problems. In this section, two common optimization algorithms for solving the optimization problem will be discussed. These are projected gradient method and nonlinear conjugate gradient method. In projected gradient (or steepest descent) method, the negative of the gradient is considered as the search direction.
The projected gradient method reads as follows:
\begin{enumerate}
\item \textbf{input} initial guesses
\item \hspace*{0.5cm}Set $u_{n+1}=u_n+s_n^u d_n^u $ and
Projected gradient method is typically converging to an optimizer slowly, whereas the nonlinear conjugate gradient method promises faster convergence \cite{nocedal1999}.
The nonlinear conjugate gradient method reads as follows:
\begin{enumerate}
\item \textbf{input} initial guesses
\item Set
\item Set
\item \textbf{while} a criteria is met \textbf{do}
\item \hspace*{0.5cm}Solve the IVP for
\item \hspace*{0.5cm}Solve the FVP for
\item \hspace*{0.5cm}Obtain step lengths
\item \hspace*{0.5cm}Set $u_{n+1}=u_n+s_n^u d_n^u $ and
\item \hspace*{0.5cm}Solve the IVP for
\item \hspace*{0.5cm}Solve the FVP for
\item \hspace*{0.5cm}Evaluate $h^u_{n+1}:= -D_u J(u_{n+1},r_{n+1},x_0) $ and
\item \hspace*{0.5cm}Determine step lengths
\item \hspace*{0.5cm}Set
\item \hspace*{0.5cm}\textbf{if}
\item \hspace*{1cm}Set
\item \hspace*{0.5cm}\textbf{end if}
\item \hspace*{0.5cm}\textbf{if}
\item \hspace*{1cm}Set
\item \hspace*{0.5cm}\textbf{end if}
\item \hspace*{0.5cm}increase
\item \textbf{end while} \end{enumerate}
Several choices exist for selecting the step length
\begin{flalign*} &\text{Fletcher-Reeves:} \quad \beta^u_{n+1}=\frac{| h^u_{n+1}|{U}}{| h^u_n|{U}},\ &\text{Polan-Ribi`ere:} \quad \beta^u_{n+1}=\frac{\langle h^u_{n+1} , \gamma^u_{n+1} \rangle_U}{| h^u_n|{U}},\ &\text{Hestenes-Stiefel:} \quad \beta^u{n+1}=\frac{\langle h^u_{n+1} , \gamma^u_{n+1} \rangle_U}{\langle d^u_n , \gamma^u_{n+1} \rangle_U}. \end{flalign*}
A new formula was also proposed by Hager and Zhang; define
\begin{flalign} \bar{\beta}^u_{n+1}&=\frac{\langle \gamma^u_{n+1}-2\frac{| \gamma^u_{n+1} |U^2}{\langle d^u{n} , \gamma^u_{n+1} \rangle_U}d^u_n , h^u_{n+1} \rangle_U}{\langle d^u_{n+1} , \gamma^u_{n+1} \rangle_U},\notag \ \eta^u_{n+1}&=-\frac{1}{| d^u_n |{U}}\min\left{0.01,| h^u_n |{U}\right}\notag. \end{flalign}
Then, the formula is \begin{equation} \text{Hager-Zhang:}\quad \beta^u_{n+1}=\max\left{\bar{\beta}^u_{n+1},\eta^u_{n+1}\right} \end{equation}
Furthermore, several schemes have been proposed to choose the step length
\begin{enumerate}
\item \textbf{Bisection \cite{buchholz2013}:} In each iteration
\item \textbf{Wolfe conditions \cite[Section~3.1]{nocedal1999}:} In each iteration
\begin{subequations}\label{Numerics-eq-curvature Wolfe} \begin{flalign} J(u_{n,m},r_n;x_0)&\le J(u_{n},r_n;x_0)+c_1s^u_{n,m}\langle h^u_{n,m} , d^u_{n} \rangle_U\ &\quad +c_1s^r_{n,m}\langle h^r_{n,m} , d^r_{n}\rangle_K\notag,\ \langle h^u_{n,m} , d^u_{n} \rangle_U&\ge c_2 \langle h^u_{n}}{d^u_{n} \rangle_U,\ \langle h^r_{n,m} , d^r_{n} \rangle_K&\ge c_2 \langle h^r_{n}}{d^r_{n} \rangle_K. \end{flalign} \end{subequations}
\item \textbf{Strong Wolfe conditions \cite[Section~3.1]{nocedal1999}:} Similar to Wolfe conditions except that condition (\ref{Numerics-eq-curvature Wolfe}) is replaced with \begin{subequations} \begin{flalign} |\langle h^u_{n,m+1} , d^u_{n,m} \rangle_U|&\le c_2 |\langle h^u_{n,m} , d^u_{n,m} \rangle_U|,\ |\langle h^r_{n,m+1} , d^r_{n,m} \rangle_K|&\le c_2 |\langle h^r_{n,m} , d^r_{n,m} \rangle_K|. \end{flalign} \end{subequations}
\item \textbf{Secant method:} The step lengths can be approximate minimizers of the function
\begin{equation} s^u =\frac{\theta_{s^u }(0,0)}{\theta_{s^u }(\sigma^u ,0)-\theta_{s^u }(0,0)},; s^r=\frac{\theta_{s^r}(0,0)}{\theta_{s^r}(0,\sigma^r)-\theta_{s^r}(0,0)}, \end{equation}
where the subscripts indicate partial derivatives. In the first iteration, the constants $\sigma^u $ and
\begin{subequations} \begin{flalign}\label{Numerics-eq-secant} s^u_n &=-\frac{\langle h^u_n, d^u_n \rangle_U}{\langle h^u_n+D_u J(u_n+s^u_{n-1} d^u_n,r_n;x_0) , d^u_n \rangle_U},\ s^r_n &=-\frac{\langle h^r_n , d^r_n \rangle_K}{\langle h^r_n+D_r J(u_n,r_n+s^r_{n-1} d^r_n;x_0) , d^u_n \rangle_K}. \end{flalign} \end{subequations} %\item \textbf{Hager-Zhang with guaranteed descent}: \end{enumerate}
In each iteration, the IVP and FVP are solved numerically. To find a numerical solution to the IVP and FVP, a finite-dimensional approximation is needed. Let
%use
There are different techniques to handle the nonlinear operators
Then, the approximated IVP and FVP are governed by \begin{equation}\label{Numerics-eq-truncated} \begin{array}{ll} \dot{x}(t)=\A_nx(t)+\F_n(x(t))+\B_n(r)u(t), & x(0)=x_{n0}:=\proj_{n}x_0,\[2mm] \dot{\pb}(t)=-(\A_n^+\F'^{n,x(t)})\pb(t)-\mc Q_nx(t), & \pb(T)=0. \end{array} \end{equation} For the optimality conditions, the operator $(\mc{B}'{n,r}u)^:X_{n}\to K_{n}$ is defined by a sesquilinear form \begin{equation}\label{Numerics-eq-sesquilinear} \langle (\B'_{n,r}u)^\pb}{r}K=\langle \pb}{(\B'{n,r}r)u}, \quad \forall (u,\pb,r)\in U_{n}\times X_{n}\times K_{n}. \end{equation} Then, letting $\mc R_n:= \mc R|{X{n}}$, the approximated optimality conditions are \begin{flalign} D_u J_n(u,r;x_{n0})&=\B_n^(r)\pb(t)+\mc{R}n u(t),\label{Numerics-eq-duJ}\ D{r}J_n(u,r,x_{n0})&=\int_0^T(\B'_{n,r}u(s))^\pb(s), ds.\label{Numerics-eq-drJ} \end{flalign} These operators should satisfy a set of assumption to be qualified as an approximation of the operators in the original system. Assumptions A1-A3 in \cite{morris2011linear} ensures this for a linear system with infinite horizon cost function.
By means of a basis for the underlying spaces, the approximation can be fully realized. This yields an approximation that satisfies assumptions A1-A3 in \cite{morris2011linear}. Using $i\in \mathbb{N}n$ to enumerate the bases, let $\bm{e}^X_i$, $\bm{e}^U_i$, and $\bm{e}^K_i$ denote orthonormal bases of $X$, $U$, and $K$, respectively. It is assumed that $\bm{e}^X_i\in D(\A)$ for all $i\in \mathbb{N}n$. Denoted by $x_i$ and $p_i$ are projections of the state $x$ and adjoint state $\pb$ onto the one-dimensional subspaces spanned by $\bm{e}^X_i$. Define $u_i$ and $r_i$ in a similar way. Consider the vectors $\xv$, $\uv$, $\rv$, and $ F(\xv)$ as \begin{equation} \xv:=\begin{bmatrix} x_1\ \vdots\ x{n} \end{bmatrix}, \quad \pv:=\begin{bmatrix} p_1\ \vdots\ p_n \end{bmatrix}, \quad \uv:= \begin{bmatrix} u_1\ \vdots\ u_n \end{bmatrix}, \quad \rv:= \begin{bmatrix} r_1\ \vdots\ r_n \end{bmatrix} \end{equation} \begin{equation} \xv_0:=\begin{bmatrix} \langle x_0}{\bm{e}^X_1}\ \vdots\ \langle x_0}{\bm{e}^X{n}} \end{bmatrix}, \quad F(\xv):=\begin{bmatrix} \langle \F(x)}{\bm{e}^X_1}\ \vdots\ \langle \F(x)}{\bm{e}^X_{n}} \end{bmatrix}, \end{equation} and matrices $ A_n$, $ Q_n$, and ${dF}n({\xv})$ with $i$th row and $j$th column, $i,j=1,..., {n_z}$, as \begin{equation} {A}{ij}:=\langle \A \bm{e}^X_j}{\bm{e}^X_i}, \quad {Q}{ij}:=\langle \mc Q \bm{e}^X_j}{\bm{e}^X_i}, \quad {dF}{ij}(\xv):=\langle \F'{x}\bm{e}^X_j}{\bm{e}^X_i}, \end{equation} matrix $ B(\rv)$ with $i=1,...,{n_z}$ and $j=1,...,{n_u}$ as \begin{equation} B{ij}(\rv):=\langle \B(r)\bm{e}^U_j}{\bm{e}^X_i} . \end{equation} The superscript $^$ will denote conjugate transpose, $ A^=\bar{ A}^T$. A finite-dimensional state-space representation of the approximated IVP and FVP is \begin{equation}\label{Numerics-eq-approximate IVP FVP} \begin{array}{ll} \dot{\xv}(t)= A_n\xv(t)+ F_n(\xv(t))+ B_n(\rv)\uv(t), & \xv(0)=\xv_0,\[2mm] \dot{\pv}(t)=-( A_n^+{dF}^_n({\xv(t)}))\pv(t)- Q_n\xv(t), & \pv(T)=0. \end{array} \end{equation}
Also, define the matrix $ R_n$ with
%The time derivatives can be approximated using Euler method. Consider a partition
A basis is chosen for the numerical simulation. Let
\begin{equation}
c_i=\sqrt{\frac{2\ell^3\pi^4 i^4}{EI\pi^4 i^4+k\ell^4+\rho a \ell^4 \pi^4 i^4}}.
\end{equation}
It is straightforward to show that the following sequence forms an orthonormal basis for
\begin{equation*}
B_{(2i-1)1}=B_{(2i)1}={c_i}\int_0^\ell b(\xi;r)\sin(\frac{\pi i}{\ell}\xi) , d\xi.
\end{equation*}
The components of the nonlinear operator
In the railway track model, if the variables
\begin{equation}
\begin{cases}
\frac{\partial^2 w}{\partial t^2}+\frac{\partial}{\partial \xi^2}(\frac{\partial^2 w}{\partial \xi^2}+c_1\frac{\partial ^3 w}{\partial \xi^2 \partial t})+c_2 \frac{\partial w}{\partial t}+c_3w +c_4 w^3=u(\xi,t),\[1mm]
\allowdisplaybreaks w(\xi,0)=w_0(\xi), \quad \frac{\partial w}{\partial t}(\xi,0)=v_0(\xi),\[1mm]
\allowdisplaybreaks w(0,t)=w(1,t)=0,\[1mm]
\allowdisplaybreaks \frac{\partial ^2w}{\partial \xi^2}(0,t)+c_1\frac{\partial ^3w}{\partial \xi^2\partial t}(0,t)=0,\[1mm]
\frac{\partial^2 w}{\partial \xi^2}(1,t)+c_1\frac{\partial ^3w}{\partial \xi^2\partial t}(1,t)=0.
\end{cases}
\end{equation}
The relative value of the coefficients is important. The coefficients are chosen with nominal values
\begin{equation}
c_1=10^{-4}, \quad c_2=0.1, \quad c_3=1, \quad c_4=10.
\end{equation}
The coefficients
Given an order of approximation, the initial conditions are chosen such that all modes are excited. The initial conditions are chosen from \begin{equation} x_0=\left(2,, 3,, \frac{2}{2},, \frac{3}{2},, \frac{2}{4},, \frac{3}{4},, \frac{2}{8},, \frac{3}{8},, \frac{2}{16},, \frac{3}{16}\right). \end{equation} The order of approximation is equal to the dimension of an initial condition. For example, if the order of approximation is 4, the initial condition is \begin{equation} x_0=\left(2,, 3,, \frac{2}{2},, \frac{3}{2}\right). \end{equation} The initial condition is illustrated in \Cref{Numerics-incond} for the 10th order approximation. \begin{figure}[h] \centering \includegraphics[width=0.4\linewidth]{"MATLAB- Railway track - new codes/initial condition"} \captionsetup{font=small, width=0.7\linewidth} \caption{Graph of the the initial condition for the simulations.} \label{Numerics-incond} \end{figure}
Simulations were conducted using the software MATLAB. The ODE solver \texttt{ode15s} was used to solve the finite-dimensional approximation of the system. MATLAB optimization routine \texttt{fmincon} was also used as the optimization algorithm. The convergence of the approximation method is illustrated in \Cref{fig-order damped,fig-order undamped}. It is observed that beyond 6th order approximation, increasing the approximation order will not make a noticeable difference. \Cref{fig-nonlin damped,fig-nonlin undamped} compare the cost and optimal input for the linear and nonlinear model in the presence and absence of damping. These figures indicate a significant change in the cost of control and in the optimal input. \Cref{fig-nonlin cost} shows how the cost and optimal location of actuators change when the coefficient of nonlinearity,
\begin{figure}[h] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/increasing order"} \captionsetup{font=small, width=\linewidth} \caption{Convergence of the numerical scheme for different orders of approximation in undamped beam. No significant improvement is observed for 4th order approximation or higher.} \label{fig-order damped} \end{figure}
\begin{figure}[H] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/increasing order -undamped"} \captionsetup{font=small, width=\linewidth} \caption{Convergence of the numerical scheme for different orders of approximation in damped beam. No significant improvement is observed for 6th order approximation or higher.} \label{fig-order undamped} \end{figure}
\begin{figure}[H] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/linearVsnonlinear-damping"} \captionsetup{font=small, width=\linewidth} \caption{Comparison of the optimal input and cost function in linear and nonlinear damped beam. The cost of control increases by increasing the nonlinearity.} \label{fig-nonlin damped} \end{figure}
\begin{figure}[H] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/linearVSnonlinear-nodamping"} \captionsetup{font=small, width=\linewidth} \caption{Comparison of the optimal input and cost function in linear and nonlinear undamped beam. The cost of control increases by increasing the nonlinearity.} \label{fig-nonlin undamped} \end{figure}
\newpage \begin{figure}[h] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/alpha"} \captionsetup{font=small, width=\linewidth} \caption{Effect of nonlinearity on the cost function. The optimal actuator locations do not change significantly despite the change in the cost.} \label{fig-nonlin cost} \end{figure}
\begin{figure}[H] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/mu"} \captionsetup{font=small, width=\linewidth} \caption{Effect of viscous damping on the cost function. The optimal actuator locations move away from center as the damping is decreased.} \label{fig-visc} \end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/Cd"}
\captionsetup{font=small, width=\linewidth}
\caption{Effect of Kelvin-Voigt damping on the cost function. If
\begin{figure}[H] \centering \includegraphics[width=0.6\linewidth]{"C:/Users/sajjad/Dropbox/Edalatzadeh/Numerics on railway model/MATLAB- Railway track - new codes/optimalVSmidpoint"} \captionsetup{font=small, width=\linewidth} \caption{ Comparison of optimal inputs: optimal location vs center. Actuators on optimal locations improve the control input.} \label{fig-center} \end{figure}