-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpi_dag.py
executable file
·187 lines (167 loc) · 6.53 KB
/
pi_dag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python3
import argparse
import random
from pathlib import Path
from os import mkdir
from os.path import isdir, join
import pdb
# HTCondor libraries
import htcondor
from htcondor import dags
def cli_parser():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--seed', type=int, default=42,
help="Root RNG seed")
parser.add_argument('-j', '--njobs', type=int, default=1,
help="Number of parallel jobs")
parser.add_argument('-i', '--iters', type=int, default=1000,
help="Number of iterations per job")
parser.add_argument('-t', '--threads', type=int, default=1,
help="Number of multiprocessing threads")
parser.add_argument('--submit', action='store_true', default=False,
help="Generate DAG *AND* submit workflow to queue")
parser.add_argument('-v','--verbose', action='store_true', default=False,
help="Print out DAG creation steps")
args = parser.parse_args()
if args.iters % args.threads != 0:
sys.exit("--iters ({}) must be a multiple of --threads ({})".format(args.iters, args.threads))
return args
def sampling_jobs(rng_seed, njobs, iters, threads):
# Define the Sampling Jobs (submit file)
sample_sub = htcondor.Submit(
executable = 'pi_samples.py',
arguments = '--seed $(seed) --iters $(iters) --threads $(threads) --outfile $(outfile)',
should_transfer_files = "YES",
initialdir = 'results',
log = '../logs/samples.log',
output = '../logs/samples_$(id).out',
error = '../logs/samples_$(id).err',
request_cpus = '$(threads)',
request_memory = '1GB',
request_disk = '1GB',
)
# root RNG seed
random.seed(rng_seed)
seed_nums = random.sample(range(1000000), k=njobs)
# construct input arg dicts for sampling jobs
sample_vars = []
for i in range(njobs):
sample_vars.append(
{'seed': str(seed_nums[i]), 'iters': str(iters), 'threads': str(threads),
'outfile': f'samples_{i}.csv', "id": str(i)}
)
return {'submit': sample_sub, 'vars': sample_vars}
def summary_job(sample_files, outfile):
summ_sub = htcondor.Submit(
executable = 'pi_summary.py',
arguments = '--infiles $(infiles) --outfile $(outfile)',
should_transfer_files = "YES",
initialdir = 'results',
transfer_input_files = '$(transfer)',
log = '../logs/summ.log',
output = '../logs/summ.out',
error = '../logs/summ.err',
request_cpus = '1',
request_memory = '1GB',
request_disk = '10GB',
)
summ_vars = [{'infiles': ' '.join(sample_files), 'outfile': outfile, 'transfer': ','.join(sample_files)}]
return {'submit': summ_sub, 'vars': summ_vars}
def trace_plot_job(summ_file):
# Define the Trace plot Jobs (submit file)
trace_sub = htcondor.Submit(
executable = 'pi_trace.py',
arguments = '--infile $(infile)',
should_transfer_files = "YES",
initialdir = 'results/',
transfer_input_files = '$(infile)',
log = '../logs/trace.log',
output = '../logs/trace.out',
error = '../logs/trace.err',
request_cpus = '1',
request_memory = '1GB',
request_disk = '1GB',
)
# construct input arg dicts for trace plotting jobs
trace_vars = [{'infile': summ_file}]
return {'submit': trace_sub, 'vars': trace_vars}
def var_plot_job(summ_file):
# Define the Variance plot Jobs (submit file)
var_sub = htcondor.Submit(
executable = 'pi_variance.py',
arguments = '--infile $(infile)',
should_transfer_files = "YES",
initialdir = 'results/',
transfer_input_files = '$(infile)',
log = '../logs/var.log',
output = '../logs/var.out',
error = '../logs/var.err',
request_cpus = '1',
request_memory = '1GB',
request_disk = '1GB',
)
# construct input arg dicts for trace plotting jobs
var_vars = [{'infile': summ_file}]
return {'submit': var_sub, 'vars': var_vars}
if __name__ == "__main__":
# parser the input arguments for DAG
args = cli_parser()
## Set up directory structure for job log, out and error
this_dir = Path(__file__).parent
for dir in ['logs', 'results']:
new_dir = join(this_dir, dir)
if not isdir(new_dir):
mkdir(new_dir)
## Making the DAG
if args.verbose: print("Generate DAG object")
pi_dag = dags.DAG(
dot_config=dags.DotConfig(join(this_dir,'results','pi.dot'))
)
# Add sampling jobs layer to DAG
sampling = sampling_jobs(args.seed, args.njobs, args.iters, args.threads)
if args.verbose: print("\tAdd sampling layer to DAG")
sample_layer = pi_dag.layer(
name='sample',
submit_description=sampling['submit'], vars=sampling['vars']
)
samp_files = [f['outfile'] for f in sampling['vars']]
if args.threads > 1:
infiles = [F.replace('.csv', f"_{i}.csv") for i in range(args.threads) for F in samp_files]
else:
infiles = samp_files
summ_file = 'summ_estimate.csv'
# Add summary job layer to DAG
if args.verbose: print("\tAdd summary layer to DAG")
summary = summary_job(infiles, summ_file)
summ_layer = sample_layer.child_layer(
name='summary',
submit_description=summary['submit'], vars=summary['vars']
)
# Add the trace plotting job layer to DAG
trace = trace_plot_job(summ_file)
if args.verbose: print("\tAdd plotting traces layer to DAG")
trace_layer = summ_layer.child_layer(
name='trace',
submit_description=trace['submit'], vars=trace['vars']
)
# Add the variance plotting job layer to DAG
variance = var_plot_job(summ_file)
if args.verbose: print("\tAdd plotting variance layer to DAG")
var_layer = summ_layer.child_layer(
name='variance',
submit_description=variance['submit'], vars=variance['vars']
)
## Write DAG file to disk
if args.verbose: print("\tWrite out DAG and associated submit files")
dag_file = dags.write_dag(pi_dag, this_dir, dag_file_name='pi.dag')
## Programmatically submit full workflow
if args.submit:
# Generate condor_submit file for DAG
if args.verbose: print("\tWrite out submit file for DAG")
dag_submit = htcondor.Submit.from_dag(
str(dag_file), {'force': 1, 'batch-name': 'MmmmmPi'}
)
if args.verbose: print("Submit workflow to queue")
# Connect to the Scheduler and submit the DAGman job
schedd = htcondor.Schedd()
schedd.submit(dag_submit)