forked from tjmoon0104/pytorch-tiny-imagenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_it.py
93 lines (81 loc) · 3.86 KB
/
train_it.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch, time, copy, sys
import matplotlib.pyplot as plt
from livelossplot import PlotLosses
def train_model_it(model, dataloaders, dataset_sizes, criterion, optimizer, batch_size, num_epochs=10, scheduler=None):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
since = time.time()
liveloss = PlotLosses()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
running_loss = 0.0
running_corrects = 0
#Iteration
for i, (inputs, labels) in enumerate(dataloaders['train']):
if scheduler != None:
scheduler.step()
model.train()
running_loss = 0.0
running_corrects = 0
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
print("\rTraining Iteration: {}/{}, Loss: {}.".format(i+1, len(dataloaders['train']), loss.item() * inputs.size(0) / batch_size ), end="")
sys.stdout.flush()
if (i+1) % 100 == 0:
it_loss = running_loss / batch_size
it_acc = running_corrects.double() / batch_size
model.eval()
val_loss = 0
val_corr = 0
for j, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(False):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
val_corr += torch.sum(preds == labels.data)
print("\rValidation Iteration: {}/{}, Loss: {}.".format(j+1, len(dataloaders['val']), loss.item() * inputs.size(0) / batch_size ), end="")
sys.stdout.flush()
valid_loss = val_loss / dataset_sizes['val']
valid_acc = val_corr.double() / dataset_sizes['val']
if valid_acc > best_acc:
best_acc = valid_acc
best_model_wts = copy.deepcopy(model.state_dict())
# statistics
liveloss.update({
'log loss': it_loss,
'val_log loss': valid_loss,
'accuracy': it_acc,
'val_accuracy': valid_acc
})
liveloss.draw()
print('validation loss: {}, validation accuracy: {}'.format(valid_loss, valid_acc))
print('Best Accuracy: {}'.format(best_acc))
torch.save(model.state_dict(), "./models/acc_{}_loss_{}.pt".format(best_acc, valid_loss))
# print('Train Loss: {:.4f} Acc: {:.4f}'.format(avg_loss, t_acc))
# print( 'Val Loss: {:.4f} Acc: {:.4f}'.format(val_loss, val_acc))
# print('Best Val Accuracy: {}'.format(best_acc))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model