forked from mrhan1993/Fooocus-API
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
212 lines (191 loc) · 12 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import copy
import os
import numpy as np
from PIL import Image
from typing import List
from cog import BasePredictor, BaseModel, Input, Path
from fooocusapi.file_utils import output_dir
from fooocusapi.parameters import (GenerationFinishReason,
ImageGenerationParams,
available_aspect_ratios,
uov_methods,
outpaint_expansions,
default_styles,
default_base_model_name,
default_refiner_model_name,
default_loras,
default_refiner_switch,
default_cfg_scale,
default_prompt_negative)
from fooocusapi.task_queue import TaskType
class Output(BaseModel):
seeds: List[str]
paths: List[Path]
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
from main import pre_setup
pre_setup(disable_image_log=True, skip_pip=True, preload_pipeline=True, preset=None)
def predict(
self,
prompt: str = Input( default='', description="Prompt for image generation"),
negative_prompt: str = Input( default=default_prompt_negative,
description="Negtive prompt for image generation"),
style_selections: str = Input(default=','.join(default_styles),
description="Fooocus styles applied for image generation, seperated by comma"),
performance_selection: str = Input( default='Speed',
description="Performance selection", choices=['Speed', 'Quality', 'Extreme Speed']),
aspect_ratios_selection: str = Input(default='1152*896',
description="The generated image's size", choices=available_aspect_ratios),
image_number: int = Input(default=1,
description="How many image to generate", ge=1, le=8),
image_seed: int = Input(default=-1,
description="Seed to generate image, -1 for random"),
sharpness: float = Input(default=2.0, ge=0.0, le=30.0),
guidance_scale: float = Input(default=default_cfg_scale, ge=1.0, le=30.0),
refiner_switch: float = Input(default=default_refiner_switch, ge=0.1, le=1.0),
uov_input_image: Path = Input(default=None,
description="Input image for upscale or variation, keep None for not upscale or variation"),
uov_method: str = Input(default='Disabled', choices=uov_methods),
uov_upscale_value: float = Input(default=0, description="Only when Upscale (Custom)"),
inpaint_additional_prompt: str = Input( default='', description="Prompt for image generation"),
inpaint_input_image: Path = Input(default=None,
description="Input image for inpaint or outpaint, keep None for not inpaint or outpaint. Please noticed, `uov_input_image` has bigger priority is not None."),
inpaint_input_mask: Path = Input(default=None,
description="Input mask for inpaint"),
outpaint_selections: str = Input(default='',
description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' seperated by comma"),
outpaint_distance_left: int = Input(default=0,
description="Outpaint expansion distance from Left of the image"),
outpaint_distance_top: int = Input(default=0,
description="Outpaint expansion distance from Top of the image"),
outpaint_distance_right: int = Input(default=0,
description="Outpaint expansion distance from Right of the image"),
outpaint_distance_bottom: int = Input(default=0,
description="Outpaint expansion distance from Bottom of the image"),
cn_img1: Path = Input(default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop1: float = Input(default=None, ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight1: float = Input(default=None, ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type1: str = Input(default='ImagePrompt', description="ControlNet type for image prompt", choices=[
'ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS']),
cn_img2: Path = Input(default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop2: float = Input(default=None, ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight2: float = Input(default=None, ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type2: str = Input(default='ImagePrompt', description="ControlNet type for image prompt", choices=[
'ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS']),
cn_img3: Path = Input(default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop3: float = Input(default=None, ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight3: float = Input(default=None, ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type3: str = Input(default='ImagePrompt',
description="ControlNet type for image prompt", choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS']),
cn_img4: Path = Input(default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop4: float = Input(default=None, ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight4: float = Input(default=None, ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type4: str = Input(default='ImagePrompt', description="ControlNet type for image prompt", choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS']),
) -> Output:
"""Run a single prediction on the model"""
import modules.flags as flags
from modules.sdxl_styles import legal_style_names
from fooocusapi.worker import blocking_get_task_result, worker_queue
base_model_name = default_base_model_name
refiner_model_name = default_refiner_model_name
loras = copy.copy(default_loras)
style_selections_arr = []
for s in style_selections.strip().split(','):
style = s.strip()
if style in legal_style_names:
style_selections_arr.append(style)
if uov_input_image is not None:
im = Image.open(str(uov_input_image))
uov_input_image = np.array(im)
inpaint_input_image_dict = None
if inpaint_input_image is not None:
im = Image.open(str(inpaint_input_image))
inpaint_input_image = np.array(im)
if inpaint_input_mask is not None:
im = Image.open(str(inpaint_input_mask))
inpaint_input_mask = np.array(im)
inpaint_input_image_dict = {
'image': inpaint_input_image,
'mask': inpaint_input_mask
}
outpaint_selections_arr = []
for e in outpaint_selections.strip().split(','):
expansion = e.strip()
if expansion in outpaint_expansions:
outpaint_selections_arr.append(expansion)
image_prompts = []
image_prompt_config = [(cn_img1, cn_stop1, cn_weight1, cn_type1), (cn_img2, cn_stop2, cn_weight2, cn_type2),
(cn_img3, cn_stop3, cn_weight3, cn_type3), (cn_img4, cn_stop4, cn_weight4, cn_type4)]
for config in image_prompt_config:
cn_img, cn_stop, cn_weight, cn_type = config
if cn_img is not None:
im = Image.open(str(cn_img))
cn_img = np.array(im)
if cn_stop is None:
cn_stop = flags.default_parameters[cn_type][0]
if cn_weight is None:
cn_weight = flags.default_parameters[cn_type][1]
image_prompts.append((cn_img, cn_stop, cn_weight, cn_type))
advanced_params = None
params = ImageGenerationParams(prompt=prompt,
negative_prompt=negative_prompt,
style_selections=style_selections_arr,
performance_selection=performance_selection,
aspect_ratios_selection=aspect_ratios_selection,
image_number=image_number,
image_seed=image_seed,
sharpness=sharpness,
guidance_scale=guidance_scale,
base_model_name=base_model_name,
refiner_model_name=refiner_model_name,
refiner_switch=refiner_switch,
loras=loras,
uov_input_image=uov_input_image,
uov_method=uov_method,
upscale_value=uov_upscale_value,
outpaint_selections=outpaint_selections_arr,
inpaint_input_image=inpaint_input_image_dict,
image_prompts=image_prompts,
advanced_params=advanced_params,
inpaint_additional_prompt=inpaint_additional_prompt,
outpaint_distance_left=outpaint_distance_left,
outpaint_distance_top=outpaint_distance_top,
outpaint_distance_right=outpaint_distance_right,
outpaint_distance_bottom=outpaint_distance_bottom,
require_base64=False,
)
print(f"[Predictor Predict] Params: {params.__dict__}")
async_task = worker_queue.add_task(TaskType.text_2_img, {'params': params.__dict__, 'require_base64': False})
if async_task is None:
print("[Task Queue] The task queue has reached limit")
raise Exception(
f"The task queue has reached limit."
)
results = blocking_get_task_result(async_task.job_id)
output_paths: List[Path] = []
output_seeds: List[str] = []
for r in results:
if r.finish_reason == GenerationFinishReason.success and r.im is not None:
output_seeds.append(r.seed)
output_paths.append(Path(os.path.join(output_dir, r.im)))
print(f"[Predictor Predict] Finished with {len(output_paths)} images")
if len(output_paths) == 0:
raise Exception(
f"Process failed."
)
return Output(seeds=output_seeds, paths=output_paths)