-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathHydrogenAtom.py
100 lines (87 loc) · 3.28 KB
/
HydrogenAtom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
#This program uses the variational method to optimize the wavefunctions of a hydrogen atom
#The hamiltonian is given by H = -Del^2 * hbar^2/(2m) - e^2/(4 pi e0 r)
#The basis functions used are eigenfunctions of position (cubes/delta functions), |ri>
#The wavefunction to be found is psi = sum ci |ri>
#By evaluating and diagonalizing the hamiltonian matrix <rj|H|ri>,
#the energy eigenfunctions can be found.
#In this basis, U is diagonal, and <ri|U|ri> ~= -e^2/(4 pi e0 ri)
#A large error comes from the approximation of the potential energy,
#Because it should actually be evaluated by integrating over (xi,xi+d), (yi,yi+d), (zi,zi+d)
#The kinetic energy is evaluated via the Laplacian by the finite difference method
#d^2/dx^2 |ri> = (|ri - d*xhat> -2|ri> + |ri + d*xhat>)/d^2 where d is the grid spacing, and xhat is a unit vector in the x direction
nx = 8 #This program scales as (nx*ny*nz)^3
ny = 8
nz = 8
d = 0.5 #angstroms Because of the above mentioned error in calculating U, the way the program converges with grid spacing is not immediately obvious
hbarOverM = 7.62 #eV/angstrom^2
eSquaredOverfourPiE0 = 14.39 #eV * angstrom.
def gridPoints(): #Generates the x, y, and z coordinates of the cubic grid.
# An even number of points is prefered so that the origin is not included and the singularity is avoided
xyz = np.zeros((nx*ny*nz,3))
for i in range(0,nx):
for j in range(0,ny):
for k in range(0,nz):
xyz[i*ny*nz+j*nz+k,0] = d * (i- (nx-1)/2.0);
xyz[i*ny*nz+j*nz+k,1] = d * (j- (ny-1)/2.0);
xyz[i*ny*nz+j*nz+k,2] = d * (k- (nz-1)/2.0);
return xyz
def potentialEnergy(): #Generates a potential energy matrix.
xyz = gridPoints()
U = np.zeros((len(xyz),len(xyz)))
for i in range(0,nx):
for j in range(0,ny):
for k in range(0,nz):
index = i*ny*nz+j*nz+k
r = (xyz[index,0]**2+xyz[index,1]**2+xyz[index,2]**2) ** 0.5
U[index,index] = -1 *eSquaredOverfourPiE0/r
return U
def Laplacian(): #Generates the Laplacian matrix.
L = np.zeros((nx*ny*nz,nx*ny*nz))
for i in range(0,nx):
for j in range(0,ny):
for k in range(0,nz):
index = i*ny*nz+j*nz+k
L[index,index] = -6;
#When on the boundary of the grid, the approximation of the second derivative changes
#I feel like there must be a better way to do this
if i>0:
L[index,index-ny*nz] = 1.0
else:
L[index,index] += 1
if i<nx-1:
L[index,index+ny*nz] = 1.0
else:
L[index,index] += 1
if j>0:
L[index,index-nz] = 1.0
else:
L[index,index] += 1
if j<ny-1:
L[index,index+nz] = 1.0
else:
L[index,index] += 1
if k>0:
L[index,index-1] = 1.0
else:
L[index,index] += 1
if k<nz-1:
L[index,index+1] = 1.0
else:
L[index,index] += 1
L = L / d**2
return L
def main(args):
U = potentialEnergy()
L = Laplacian()
T = L * -hbarOverM /2
H = T+U
# H = T #Use this expression for the hamiltonian to evaluate a particle-in-a-box instead of the hydrogen atom
eigE,eigV = np.linalg.eig(H)
eigE.sort(axis=0) #This separates the eigenvalues from their eigenvectors. Eigenvectors should be rearranged when eigenvalues are sorted.
print("The lowest energy Eigenvalues:")
print(eigE[0:20:1]) #print the first 20 eigenvalues
return 0
if __name__ == '__main__':
import sys
sys.exit(main(sys.argv))