-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
55 lines (43 loc) · 2.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import collections
import torch
import numpy as np
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
def main(config):
logger = config.get_logger('train')
# setup data_loader instances
data_loader = config.init_obj('data_loader', module_data)
valid_data_loader = config.init_obj('valid_data_loader', module_data)
# build model architecture, then print to console
model = config.init_obj('arch', module_arch)
logger.info(model)
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainer = Trainer(model, criterion, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler)
trainer.train()
if __name__=="__main__":
parser = argparse.ArgumentParser(description='3DIAS_PyTorch')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
parser.add_argument('-t', '--tag', default=None, type=str,
help='experience name in tensorboard (default: None)')
config = ConfigParser.from_args(parser.parse_args()) #, options)
main(config)