-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
195 lines (153 loc) · 6.52 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other
maze, the sequence of moves will be incorrect, so only use this for tinyMaze
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s,s,w,s,w,w,s,w]
def depthFirstSearch(problem):
"""
Search the deepest nodes in the search tree first [p 85].
Your search algorithm needs to return a list of actions that reaches
the goal. Make sure to implement a graph search algorithm [Fig. 3.7].
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:"""
"*** YOUR CODE HERE ***"
from util import Stack
print("Start:", problem.getStartState())
print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
print("Start's successors:", problem.getSuccessors(problem.getStartState()))
frontier = Stack()
explored = []
frontier.push((problem.getStartState(),[]))
while not frontier.isEmpty():
position, moves = frontier.pop()
if(position in explored):
continue
explored.append(position)
# Returns a set of actions from the start state to this position, if this position is a goal state
if(problem.isGoalState(position)):
return moves
# updating the moves list
for state, direction, cost in problem.getSuccessors(position):
frontier.push((state, moves+[direction]))
util.raiseNotDefined()
def breadthFirstSearch(problem):
"Search the shallowest nodes in the search tree first. [p 81]"
"*** YOUR CODE HERE ***"
from util import Queue
frontier = Queue()
explored = []
frontier.push((problem.getStartState(),[]))
explored.append(problem.getStartState())
while not frontier.isEmpty():
position, moves = frontier.pop()
# updating the moves list
for state, direction, cost in problem.getSuccessors(position):
if not( state in explored):
explored.append(state)
# Returns a set of actions from the start state to this position, if this position is a goal state
if(problem.isGoalState(state)):
return moves+[direction]
frontier.push((state, moves+[direction]))
util.raiseNotDefined()
def uniformCostSearch(problem):
"Search the node of least total cost first. "
"*** YOUR CODE HERE ***"
from util import PriorityQueue
frontier = PriorityQueue()
explored = []
frontier.push((problem.getStartState(),[]),0)
explored.append(problem.getStartState())
while not frontier.isEmpty():
position, moves = frontier.pop()
# Returns a set of actions from the start state to this position, if this position is a goal state
if(problem.isGoalState(position)):
return moves
# updating the moves list and the total cost of a particular sequence of actions
for state, direction, cost in problem.getSuccessors(position):
if not( state in explored):
explored.append(state)
new_moves = moves +[direction]
frontier.push((state,new_moves), problem.getCostOfActions(new_moves))
util.raiseNotDefined()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
"Search the node that has the lowest combined cost and heuristic first."
"*** YOUR CODE HERE ***"
from util import PriorityQueue
frontier = PriorityQueue()
explored = []
frontier.push((problem.getStartState(),[]),(heuristic(problem.getStartState(), problem)))
explored.append(problem.getStartState())
while not frontier.isEmpty():
position, moves = frontier.pop()
# Returns a set of actions from the start state to this position, if this position is a goal state
if(problem.isGoalState(position)):
return moves
# updating the moves list, the total cost of a particular sequence of actions + Heuristic evaluation
for state, direction, cost in problem.getSuccessors(position):
if( state not in explored):
explored.append(state)
new_moves = moves +[direction]
sum = problem.getCostOfActions(new_moves)+ heuristic(state, problem)
frontier.push((state,new_moves), sum)
util.raiseNotDefined()
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch