-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
106 lines (76 loc) · 3.04 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import cv2 as cv
from matplotlib.pyplot import text
import tensorflow as tf
from numba import cuda
import numpy as np
from keras.models import model_from_json
# import math
# resetting GPU
device = cuda.get_current_device()
device.reset()
# configuring GPU
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
def rescaleFrame(frame, scale=0.75):
width = int(frame.shape[1] * scale)
height = int(frame.shape[0] * scale)
dimensions = (width, height)
return cv.resize(frame, dimensions, interpolation=cv.INTER_AREA)
def process_input(img):
IMG_SIZE = 69
# gry_img = cv.imread(img, cv.IMREAD_GRAYSCALE)
img = cv.resize(img, (IMG_SIZE, IMG_SIZE))
return img.reshape(-1, IMG_SIZE, IMG_SIZE, 1)
# def detected_mask():
# # model = tf.keras.models.load_model('CNN_64X3.h5')
# prediction = mask_model.predict([process_input('test/test.jpg')])
# maxindex = int(prediction[0][0])
# print(math.ceil(prediction[0][0]))
# print(np.argmax(prediction))
# print(maxindex)
# print(className[maxindex])
def main():
while True:
_, frame = capture.read()
face_detector = cv.CascadeClassifier(
'models/haarcascade_frontalface_default.xml')
frame = rescaleFrame(frame, 0.3)
gray_face = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(
gray_face, scaleFactor=1.09, minNeighbors=7, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE)
# print(faces)
for (x, y, w, h) in faces:
cv.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
rec_frame = gray_face[y:y + h, x:x + w]
cropped_img = process_input(rec_frame)
prediction = mask_model.predict([cropped_img])
maxindex = round(prediction[0][0])
str_classname = "{} {}".format(
className[maxindex], "{:.2f}".format(prediction[0][0], 2))
str_facecount = "face count : {}".format(len(faces))
cv.putText(frame, str_classname, (x+5, y-20),
cv.FONT_HERSHEY_SIMPLEX, 1, (15, 15, 253) if maxindex == 0 else (0, 255, 0), 2, cv.LINE_AA)
cv.putText(frame, str_facecount,
(40, 40), font, 1, (255, 0, 0), 2, cv.LINE_AA)
#frame_resized = rescaleFrame(frame, scale=.2)
cv.imshow('Mask-detection', frame)
if cv.waitKey(1) & 0xFF == ord('d'):
break
elif 0xFF == ord('q'):
cv.waitKey(1000)
capture.release()
cv.destroyAllWindows()
if __name__ == "__main__":
className = {0: "no mask", 1: "masked"}
# Loading the model
json_file = open('models/mask_model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
mask_model = model_from_json(loaded_model_json)
mask_model.load_weights("models/CNN_64X3.h5")
font = cv.FONT_HERSHEY_SIMPLEX
capture = cv.VideoCapture('test/test2.mp4')
# for web cam
# capture = cv.VideoCapture(0)
main()