forked from yunjey/stargan
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
435 lines (364 loc) · 16.8 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np
import os
import time
import datetime
from torch.autograd import grad
from torch.autograd import Variable
from torchvision.utils import save_image
from torchvision import transforms
from model import Generator
from model import Discriminator
from PIL import Image
import random
class Solver(object):
def __init__(self, celebA_loader, rafd_loader, config):
# Data loader
self.celebA_loader = celebA_loader
self.rafd_loader = rafd_loader
# Model hyper-parameters
self.c_dim = config.c_dim
self.c2_dim = config.c2_dim
self.image_size = config.image_size
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.g_repeat_num = config.g_repeat_num
self.d_repeat_num = config.d_repeat_num
self.d_train_repeat = config.d_train_repeat
# Hyper-parameteres
self.lambda_cls = config.lambda_cls
self.lambda_rec = config.lambda_rec
self.lambda_gp = config.lambda_gp
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.beta1 = config.beta1
self.beta2 = config.beta2
# Training settings
self.dataset = config.dataset
self.num_epochs = config.num_epochs
self.num_epochs_decay = config.num_epochs_decay
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.batch_size = config.batch_size
self.use_tensorboard = config.use_tensorboard
self.pretrained_model = config.pretrained_model
# Test settings
self.test_model = config.test_model
# Path
self.log_path = config.log_path
self.sample_path = config.sample_path
self.model_save_path = config.model_save_path
self.result_path = config.result_path
# Step size
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
# Build tensorboard if use
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
# Start with trained model
if self.pretrained_model:
self.load_pretrained_model()
def build_model(self):
# Define a generator and a discriminator
if self.dataset == 'Both':
self.G = Generator(self.g_conv_dim, self.c_dim+self.c2_dim+2, self.g_repeat_num) # 2 for mask vector
self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim+self.c2_dim, self.d_repeat_num)
else:
self.G = Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num)
self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num)
# Optimizers
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
# Print networks
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
if torch.cuda.is_available():
self.G.cuda()
self.D.cuda()
def print_network(self, model, name):
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(name)
print(model)
print("The number of parameters: {}".format(num_params))
def load_pretrained_model(self):
self.G.load_state_dict(torch.load(os.path.join(
self.model_save_path, '{}_G.pth'.format(self.pretrained_model))))
self.D.load_state_dict(torch.load(os.path.join(
self.model_save_path, '{}_D.pth'.format(self.pretrained_model))))
print('loaded trained models (step: {})..!'.format(self.pretrained_model))
def build_tensorboard(self):
from logger import Logger
self.logger = Logger(self.log_path)
def update_lr(self, g_lr, d_lr):
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def reset_grad(self):
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def to_var(self, x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def denorm(self, x):
out = (x + 1) / 2
return out.clamp_(0, 1)
def threshold(self, x):
x = x.clone()
#x[x >= 0.5] = 1
#x[x < 0.5] = 0
x = (x >= 0.5).float()
return x
def compute_accuracy(self, x, y, dataset):
if dataset == 'CelebA':
x = F.sigmoid(x)
predicted = self.threshold(x)
correct = (predicted == y).float()
accuracy = torch.mean(correct, dim=0) * 100.0
else:
_, predicted = torch.max(x, dim=1)
correct = (predicted == y).float()
accuracy = torch.mean(correct) * 100.0
return accuracy
def one_hot(self, labels, dim):
"""Convert label indices to one-hot vector"""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out
def make_celeb_labels(self, real_c):
"""Generate domain labels for CelebA for debugging/testing.
if dataset == 'CelebA':
return single and multiple attribute changes
elif dataset == 'Both':
return single attribute changes
"""
y = [torch.FloatTensor([1, 0, 0]), # black hair
torch.FloatTensor([0, 1, 0]), # blond hair
torch.FloatTensor([0, 0, 1])] # brown hair
fixed_c_list = []
# single attribute transfer
for i in range(self.c_dim):
fixed_c = real_c.clone()
for c in fixed_c:
if i < 3:
c[:3] = y[i]
else:
c[i] = 0 if c[i] == 1 else 1 # opposite value
fixed_c_list.append(self.to_var(fixed_c, volatile=True))
'''
# multi-attribute transfer (H+G, H+A, G+A, H+G+A)
if self.dataset == 'CelebA':
for i in range(4):
fixed_c = real_c.clone()
for c in fixed_c:
if i in [0, 1, 3]: # Hair color to brown
c[:3] = y[2]
if i in [0, 2, 3]: # Gender
c[3] = 0 if c[3] == 1 else 1
if i in [1, 2, 3]: # Aged
c[4] = 0 if c[4] == 1 else 1
fixed_c_list.append(self.to_var(fixed_c, volatile=True))
'''
return fixed_c_list
def train(self):
"""Train StarGAN within a single dataset."""
# Set dataloader
if self.dataset == 'CelebA':
self.data_loader = self.celebA_loader
else:
self.data_loader = self.rafd_loader
# The number of iterations per epoch
iters_per_epoch = len(self.data_loader)
fixed_x = []
real_c = []
for i, (images, labels) in enumerate(self.data_loader):
fixed_x.append(images)
real_c.append(labels)
if i == 3:
break
# Fixed inputs and target domain labels for debugging
fixed_x = torch.cat(fixed_x, dim=0)
fixed_x = self.to_var(fixed_x, volatile=True)
real_c = torch.cat(real_c, dim=0)
if self.dataset == 'CelebA':
fixed_c_list = self.make_celeb_labels(real_c)
elif self.dataset == 'RaFD':
fixed_c_list = []
for i in range(self.c_dim):
fixed_c = self.one_hot(torch.ones(fixed_x.size(0)) * i, self.c_dim)
fixed_c_list.append(self.to_var(fixed_c, volatile=True))
# lr cache for decaying
g_lr = self.g_lr
d_lr = self.d_lr
# Start with trained model if exists
if self.pretrained_model:
start = int(self.pretrained_model.split('_')[0])
else:
start = 0
# Start training
start_time = time.time()
for e in range(start, self.num_epochs):
for i, (real_x, real_label) in enumerate(self.data_loader):
# Generat fake labels randomly (target domain labels)
rand_idx = torch.randperm(real_label.size(0))
fake_label = real_label[rand_idx]
if self.dataset == 'CelebA':
real_c = real_label.clone()
fake_c = fake_label.clone()
else:
real_c = self.one_hot(real_label, self.c_dim)
fake_c = self.one_hot(fake_label, self.c_dim)
# Convert tensor to variable
real_x = self.to_var(real_x)
real_c = self.to_var(real_c) # input for the generator
fake_c = self.to_var(fake_c)
real_label = self.to_var(real_label) # this is same as real_c if dataset == 'CelebA'
fake_label = self.to_var(fake_label)
# ================== Train D ================== #
# Compute loss with real images
out_src, out_cls = self.D(real_x)
d_loss_real = - torch.mean(out_src)
if self.dataset == 'CelebA':
d_loss_cls = F.binary_cross_entropy_with_logits(
out_cls, real_label, size_average=False) / real_x.size(0)
else:
d_loss_cls = F.cross_entropy(out_cls, real_label)
# Compute classification accuracy of the discriminator
if (i+1) % self.log_step == 0:
accuracies = self.compute_accuracy(out_cls, real_label, self.dataset)
log = ["{:.2f}".format(acc) for acc in accuracies.data.cpu().numpy()]
if self.dataset == 'CelebA':
print('Classification Acc (Black/Blond/Brown/Gender/Aged): ', end='')
else:
print('Classification Acc (8 emotional expressions): ', end='')
print(log)
# Compute loss with fake images
fake_x = self.G(real_x, fake_c)
fake_x = Variable(fake_x.data)
out_src, out_cls = self.D(fake_x)
d_loss_fake = torch.mean(out_src)
# Backward + Optimize
d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Compute gradient penalty
alpha = torch.rand(real_x.size(0), 1, 1, 1).cuda().expand_as(real_x)
interpolated = Variable(alpha * real_x.data + (1 - alpha) * fake_x.data, requires_grad=True)
out, out_cls = self.D(interpolated)
grad = torch.autograd.grad(outputs=out,
inputs=interpolated,
grad_outputs=torch.ones(out.size()).cuda(),
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
grad = grad.view(grad.size(0), -1)
grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
d_loss_gp = torch.mean((grad_l2norm - 1)**2)
# Backward + Optimize
d_loss = self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging
loss = {}
loss['D/loss_real'] = d_loss_real.data[0]
loss['D/loss_fake'] = d_loss_fake.data[0]
loss['D/loss_cls'] = d_loss_cls.data[0]
loss['D/loss_gp'] = d_loss_gp.data[0]
# ================== Train G ================== #
if (i+1) % self.d_train_repeat == 0:
# Original-to-target and target-to-original domain
fake_x = self.G(real_x, fake_c)
rec_x = self.G(fake_x, real_c)
# Compute losses
out_src, out_cls = self.D(fake_x)
g_loss_fake = - torch.mean(out_src)
g_loss_rec = torch.mean(torch.abs(real_x - rec_x))
if self.dataset == 'CelebA':
g_loss_cls = F.binary_cross_entropy_with_logits(
out_cls, fake_label, size_average=False) / fake_x.size(0)
else:
g_loss_cls = F.cross_entropy(out_cls, fake_label)
# Backward + Optimize
g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging
loss['G/loss_fake'] = g_loss_fake.data[0]
loss['G/loss_rec'] = g_loss_rec.data[0]
loss['G/loss_cls'] = g_loss_cls.data[0]
# Print out log info
if (i+1) % self.log_step == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
log = "Elapsed [{}], Epoch [{}/{}], Iter [{}/{}]".format(
elapsed, e+1, self.num_epochs, i+1, iters_per_epoch)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, e * iters_per_epoch + i + 1)
# Translate fixed images for debugging
if (i+1) % self.sample_step == 0:
fake_image_list = [fixed_x]
for fixed_c in fixed_c_list:
fake_image_list.append(self.G(fixed_x, fixed_c))
fake_images = torch.cat(fake_image_list, dim=3)
save_image(self.denorm(fake_images.data),
os.path.join(self.sample_path, '{}_{}_fake.png'.format(e+1, i+1)),nrow=1, padding=0)
print('Translated images and saved into {}..!'.format(self.sample_path))
# Save model checkpoints
if (i+1) % self.model_save_step == 0:
torch.save(self.G.state_dict(),
os.path.join(self.model_save_path, '{}_{}_G.pth'.format(e+1, i+1)))
torch.save(self.D.state_dict(),
os.path.join(self.model_save_path, '{}_{}_D.pth'.format(e+1, i+1)))
# Decay learning rate
if (e+1) > (self.num_epochs - self.num_epochs_decay):
g_lr -= (self.g_lr / float(self.num_epochs_decay))
d_lr -= (self.d_lr / float(self.num_epochs_decay))
self.update_lr(g_lr, d_lr)
print ('Decay learning rate to g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
def test(self):
"""Facial attribute transfer on CelebA or facial expression synthesis on RaFD."""
# Load trained parameters
G_path = os.path.join(self.model_save_path, '{}_G.pth'.format(self.test_model))
self.G.load_state_dict(torch.load(G_path))
self.G.eval()
if self.dataset == 'CelebA':
data_loader = self.celebA_loader
else:
data_loader = self.rafd_loader
for i, (real_x, org_c) in enumerate(data_loader):
#print(org_c)
real_x = self.to_var(real_x, volatile=True)
#print(real_x)
if self.dataset == 'CelebA':
target_c_list = self.make_celeb_labels(org_c)
else:
target_c_list = []
for j in range(self.c_dim):
target_c = self.one_hot(torch.ones(real_x.size(0)) * j, self.c_dim)
target_c_list.append(self.to_var(target_c, volatile=True))
fake_image_list = [real_x]
for target_c in target_c_list:
fake_image_list.append(self.G(real_x, target_c))
# print(list(fake_image_list))
fake_images = torch.cat(fake_image_list, dim=3)
save_path = os.path.join(self.result_path, '{}_fake.png'.format(i+1))
save_image(self.denorm(fake_images.data), save_path, nrow=1, padding=0)
print('Translated test images and saved into "{}"..!'.format(save_path))
#print(tmp)