-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlexicalizedPCFG.py
336 lines (285 loc) · 14.4 KB
/
lexicalizedPCFG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!/usr/bin/env python3
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import itertools
import random
from torch.cuda import memory_allocated
import pdb
class LexicalizedPCFG(nn.Module):
# Lexicalized PCFG:
# S → A[x] A ∈ N, x ∈ 𝚺
# A[x] → B[x] C[y] A, B, C ∈ N ∪ P, x, y ∈ 𝚺
# A[x] → B[y] C[x] A, B, C ∈ N ∪ P, x, y ∈ 𝚺
# T[x] → x T ∈ P, x ∈ 𝚺
def __init__(self, nt_states, t_states, nt_emission=False, supervised_signals = []):
super(LexicalizedPCFG, self).__init__()
self.nt_states = nt_states
self.t_states = t_states
self.states = nt_states + t_states
self.nt_emission = nt_emission
self.huge = 1e9
if(self.nt_emission):
self.word_span_slice = slice(self.states)
else:
self.word_span_slice = slice(self.nt_states,self.states)
self.supervised_signals = supervised_signals
# def logadd(self, x, y):
# d = torch.max(x,y)
# return torch.log(torch.exp(x-d) + torch.exp(y-d)) + d
def logadd(self, x, y):
names = x.names
assert names == y.names, "Two operants' names are not matched {} and {}.".format(names, y.names)
return torch.logsumexp(torch.stack([x.rename(None), y.rename(None)]), dim=0).refine_names(*names)
def logsumexp(self, x, dim=1):
d = torch.max(x, dim)[0]
if x.dim() == 1:
return torch.log(torch.exp(x - d).sum(dim)) + d
else:
return torch.log(torch.exp(x - d.unsqueeze(dim).expand_as(x)).sum(dim)) + d
def __get_scores(self, unary_scores, rule_scores, root_scores, dir_scores):
# INPUT
# unary scores : b x n x (NT + T)
# rule scores : b x (NT+T) x (NT+T) x (NT+T)
# root_scores : b x NT
# dir_scores : 2 x b x NT x (NT + T) x (NT + T) x N
# OUTPUT
# rule scores: 2 x B x (NT x T) x (NT x T) x (NT x T) x N
# (D, B, T, TL, TR, H)
# root_scores : b x NT x n
# (B, T, H)
assert unary_scores.names == ('B', 'H', 'T')
assert rule_scores.names == ('B', 'T', 'TL', 'TR')
assert root_scores.names == ('B', 'T')
assert dir_scores.names == ('D', 'B', 'T', 'H', 'TL', 'TR')
rule_shape = ('D', 'B', 'T', 'H', 'TL', 'TR')
root_shape = ('B', 'T', 'H')
rule_scores = rule_scores.align_to(*rule_shape) \
+ dir_scores.align_to(*rule_shape)
if rule_scores.size('H') == 1:
rule_scores = rule_scores.expand(-1, -1, -1, unary_scores.size('H'), -1, -1)
return rule_scores, root_scores, unary_scores
def __get_scores(self, unary_scores, rule_scores, root_scores):
# INPUT
# unary scores : b x n x (NT + T)
# rule scores : b x (NT+T) x (NT+T) x (NT+T)
# root_scores : b x NT
# dir_scores : 2 x b x NT x (NT + T) x (NT + T) x N
# OUTPUT
# rule scores: 2 x B x (NT x T) x (NT x T) x (NT x T) x N
# (D, B, T, TL, TR, H)
# root_scores : b x NT x n
# (B, T, H)
assert unary_scores.names == ('B', 'H', 'T')
assert rule_scores.names == ('B', 'T', 'H', 'TL', 'TR', 'D')
assert root_scores.names == ('B', 'T')
rule_shape = ('D', 'B', 'T', 'H', 'TL', 'TR')
root_shape = ('B', 'T', 'H')
rule_scores = rule_scores.align_to(*rule_shape)
if rule_scores.size('H') == 1:
rule_scores = rule_scores.expand(-1, -1, -1, unary_scores.size('H'), -1, -1)
return rule_scores, root_scores, unary_scores
def print_name_size(self, x):
print(x.size(), x.names)
def print_memory_usage(self, lineno, device="cuda:0"):
print("Line {}: {}M".format(lineno, int(memory_allocated(device)/1000000)))
def cross_bracket(self, l, r, gold_brackets):
for bl, br in gold_brackets:
if((bl<l<=br and r>br) or (l<bl and bl<=r<br)):
return True
return False
def get_mask(self, B, N, T, gold_tree):
mask = self.beta.new(B, N+1, N+1, T, N).fill_(0)
for i in range(B):
gold_brackets = gold_tree[i].keys()
if "phrase" in self.supervised_signals:
for l in range(N):
for r in range(l, N):
if(self.cross_bracket(l, r, gold_brackets)):
mask[i][l, r+1].fill_(-self.huge)
for l, r in gold_brackets:
mask[i][l, r+1].fill_(-self.huge)
acceptable_heads = slice(gold_tree[i][(l, r)][0], gold_tree[i][(l, r)][0] + 1)\
if "head" in self.supervised_signals else slice(l, r+1)
if(l == r):
if(gold_tree[i][(l, r)][1] < self.t_states and "tag" in self.supervised_signals):
mask[i][l, r+1, gold_tree[i][(l, r)][1] + self.nt_states, acceptable_heads] = 0
else:
mask[i][l, r+1, :, acceptable_heads] = 0
else:
if(gold_tree[i][(l, r)][1] < self.nt_states and "nt" in self.supervised_signals):
mask[i][l, r+1, gold_tree[i][(l, r)][1], acceptable_heads] = 0
else:
mask[i][l, r+1, :, acceptable_heads] = 0
return mask
def _inside(self, gold_tree=None, **kwargs):
#inside step
rule_scores, root_scores, unary_scores = self.__get_scores(**kwargs)
# statistics
B = rule_scores.size('B')
N = unary_scores.size('H')
T = self.states
# uses conventional python numbering scheme: [s, t] represents span [s, t)
# this scheme facilitates fast computation
# f[s, t] = logsumexp(f[s, :] * f[:, t])
self.beta = rule_scores.new(B, N + 1, N + 1, T, N).fill_(-self.huge).refine_names('B', 'L', 'R', 'T', 'H')
self.beta_ = rule_scores.new(B, N + 1, N + 1, T).fill_(-self.huge).refine_names('B', 'L', 'R', 'T')
if(not gold_tree is None):
mask = self.get_mask(B, N, T, gold_tree)
else:
mask = self.beta.new(B, N+1, N+1, T, N).fill_(0)
# initialization: f[k, k+1]
for k in range(N):
for state in range(self.states):
if(not self.nt_emission and state < self.nt_states):
continue
self.beta[:, k, k+1, state, k] = mask[:, k, k+1, state, k]
self.beta_[:, k, k+1, state] = unary_scores[:, k, state].rename(None) + mask[:, k, k+1, state, k].rename(None)
# span length w, at least 2
for W in np.arange(2, N+1):
# start point s
for l in range(N-W+1):
r = l + W
f = lambda x:torch.logsumexp(x.align_to('B', 'T', 'H', ...).rename(None).reshape(B, self.nt_states, W, -1), dim=3).refine_names('B', 'T', 'H')
left = lambda x, y, z: x.rename(T='TL').align_as(z) + y.rename(T='TR').align_as(z) + z
right = lambda x, y, z: x.rename(T='TL').align_as(z) + y.rename(T='TR').align_as(z) + z
g = lambda x, y, x_, y_, z: torch.cat((left(x, y_, z[0]).align_as(z),
right(x_, y, z[1]).align_as(z)), dim='D')
if W == 2:
tmp = g(self.beta[:, l, l+1, self.word_span_slice, l:r],
self.beta[:, l+1, r, self.word_span_slice, l:r],
self.beta_[:, l, l+1, self.word_span_slice],
self.beta_[:, l+1, r, self.word_span_slice],
rule_scores[:, :, :, l:r, self.word_span_slice, self.word_span_slice])
tmp = f(tmp)
elif W == 3:
tmp1 = g(self.beta[:, l, l+1, self.word_span_slice, l:r],
self.beta[:, l+1, r, :self.nt_states, l:r],
self.beta_[:, l, l+1, self.word_span_slice],
self.beta_[:, l+1, r, :self.nt_states],
rule_scores[:, :, :, l:r, self.word_span_slice, :self.nt_states])
tmp2 = g(self.beta[:, l, r-1, :self.nt_states, l:r],
self.beta[:, r-1, r, self.word_span_slice, l:r],
self.beta_[:, l, r-1, :self.nt_states],
self.beta_[:, r-1, r, self.word_span_slice],
rule_scores[:, :, :, l:r, :self.nt_states, self.word_span_slice])
tmp = self.logadd(f(tmp1), f(tmp2))
elif W >= 4:
tmp1 = g(self.beta[:, l, l+1, self.word_span_slice, l:r],
self.beta[:, l+1, r, :self.nt_states, l:r],
self.beta_[:, l, l+1, self.word_span_slice],
self.beta_[:, l+1, r, :self.nt_states],
rule_scores[:, :, :, l:r, self.word_span_slice, :self.nt_states])
tmp2 = g(self.beta[:, l, r-1, :self.nt_states, l:r],
self.beta[:, r-1, r, self.word_span_slice, l:r],
self.beta_[:, l, r-1, :self.nt_states],
self.beta_[:, r-1, r, self.word_span_slice],
rule_scores[:, :, :, l:r, :self.nt_states, self.word_span_slice])
tmp3 = g(self.beta[:, l, l+2:r-1, :self.nt_states, l:r].rename(R='U'),
self.beta[:, l+2:r-1, r, :self.nt_states, l:r].rename(L='U'),
self.beta_[:, l, l+2:r-1, :self.nt_states].rename(R='U'),
self.beta_[:, l+2:r-1, r, :self.nt_states].rename(L='U'),
rule_scores[:, :, :, l:r, :self.nt_states, :self.nt_states].align_to('D', 'B', 'T', 'H', 'U', ...))
tmp = self.logadd(self.logadd(f(tmp1), f(tmp2)), f(tmp3))
tmp = tmp + mask[:, l, r, :self.nt_states, l:r]
self.beta[:, l, r, :self.nt_states, l:r] = tmp.rename(None)
tmp_ = torch.logsumexp(tmp + unary_scores[:, l:r, :self.nt_states].align_as(tmp), dim='H')
self.beta_[:, l, r, :self.nt_states] = tmp_.rename(None)
log_Z = self.beta_[:, 0, N, :self.nt_states] + root_scores
log_Z = torch.logsumexp(log_Z, dim='T')
return log_Z
def _viterbi(self, **kwargs):
#unary scores : b x n x T
#rule scores : b x NT x (NT+T) x (NT+T)
rule_scores, root_scores, unary_scores = self.__get_scores(**kwargs)
# statistics
B = rule_scores.size('B')
N = unary_scores.size('H')
T = self.states
# # dummy rules
# rule_scores = torch.cat([rule_scores, \
# rule_scores.new(B, self.t_states, T, T) \
# .fill_(-self.huge)], dim=1)
self.scores = rule_scores.new(B, N+1, N+1, T, N).fill_(-self.huge).refine_names('B', 'L', 'R', 'T', 'H')
self.scores_ = rule_scores.new(B, N+1, N+1, T).fill_(-self.huge).refine_names('B', 'L', 'R', 'T')
self.bp = rule_scores.new(B, N+1, N+1, T, N).long().fill_(-1).refine_names('B', 'L', 'R', 'T', 'H')
self.left_bp = rule_scores.new(B, N+1, N+1, T, N).long().fill_(-1).refine_names('B', 'L', 'R', 'T', 'H')
self.right_bp = rule_scores.new(B, N+1, N+1, T, N).long().fill_(-1).refine_names('B', 'L', 'R', 'T', 'H')
self.dir_bp = rule_scores.new(B, N+1, N+1, T, N).long().fill_(-1).refine_names('B', 'L', 'R', 'T', 'H')
self.new_head_bp = rule_scores.new(B, N+1, N+1, T).long().fill_(-1).refine_names('B', 'L', 'R', 'T')
self.argmax = rule_scores.new(B, N, N).long().fill_(-1)
self.argmax_tags = rule_scores.new(B, N).long().fill_(-1)
self.spans = [[] for _ in range(B)]
# initialization: f[k, k+1]
for k in range(N):
for state in range(self.states):
if(not self.nt_emission and state < self.nt_states):
continue
self.scores[:, k, k+1, state, k] = 0
self.scores_[:, k, k+1, state] = unary_scores[:, k, state].rename(None)
self.new_head_bp[:, k, k+1, state] = k
for W in np.arange(2, N+1):
for l in range(N-W+1):
r = l + W
left = lambda x, y, z: x.rename(T='TL').align_as(z) + y.rename(T='TR').align_as(z) + z
right = lambda x, y, z: x.rename(T='TL').align_as(z) + y.rename(T='TR').align_as(z) + z
g = lambda x, y, x_, y_, z: torch.cat((left(x, y_, z[0]).align_as(z),
right(x_, y, z[1]).align_as(z)), dim='D')
# self.print_name_size(self.scores[:, l, l+1:r, :, l:r])
# self.print_name_size(rule_scores[:, :, :, l:r, :self.nt_states, :self.nt_states, l:r].align_to('D', 'B', 'T', 'H', 'U', ...))
tmp = g(self.scores[:, l, l+1:r, :, l:r].rename(R='U'),
self.scores[:, l+1:r, r, :, l:r].rename(L='U'),
self.scores_[:, l, l+1:r, :].rename(R='U'),
self.scores_[:, l+1:r, r, :].rename(L='U'),
rule_scores[:, :, :, l:r, :, :].align_to('D', 'B', 'T', 'H', 'U', ...))
tmp = tmp.align_to('B', 'T', 'H', 'D', 'U', 'TL', 'TR').flatten(['D', 'U', 'TL', 'TR'], 'position')
assert(tmp.size('position') == self.states * self.states * (W-1) * 2), "{}".format(tmp.size('position'))
# view once and marginalize
tmp, max_pos = torch.max(tmp, dim=3)
max_pos = max_pos.rename(None)
right_child = max_pos % self.states
max_pos /= self.states
left_child = max_pos % self.states
max_pos /= self.states
max_idx = max_pos % (W-1) + l + 1
max_pos = max_pos / int(W - 1)
max_dir = max_pos
self.scores[:, l, r, :self.nt_states, l:r] = tmp.rename(None)
tmp_ = tmp + unary_scores[:, l:r, :self.nt_states].align_as(tmp)
tmp_, new_head = torch.max(tmp_, dim='H')
self.scores_[:, l, r, :self.nt_states] = tmp_.rename(None)
self.bp[:, l, r, :self.nt_states, l:r] = max_idx
self.left_bp[:, l, r, :self.nt_states, l:r] = left_child
self.right_bp[:, l, r, :self.nt_states, l:r] = right_child
self.dir_bp[:, l, r, :self.nt_states, l:r] = max_dir
self.new_head_bp[:, l, r, :self.nt_states] = new_head.rename(None) + l
max_score = self.scores_[:, 0, N, :self.nt_states] + root_scores
max_score, max_idx = torch.max(max_score, dim='T')
for b in range(B):
self._backtrack(b, 0, N, max_idx[b].item())
return self.scores, self.argmax, self.spans
def _backtrack(self, b, s, t, state, head=-1):
if(head == -1):
head = int(self.new_head_bp[b][s][t][state])
u = int(self.bp[b][s][t][state][head])
assert(s < t), "s: %d, t %d"%(s, t)
left_state = int(self.left_bp[b][s][t][state][head])
right_state = int(self.right_bp[b][s][t][state][head])
direction = int(self.dir_bp[b][s][t][state][head])
self.argmax[b][s][t-1] = 1
if s == t-1:
self.spans[b].insert(0, (s, t-1, state, head))
self.argmax_tags[b][s] = state
return None
else:
self.spans[b].insert(0, (s, t-1, state, head))
if(direction == 0):
assert head < u, "head: {} < u: {}".format(head, u)
self._backtrack(b, s, u, left_state, head)
self._backtrack(b, u, t, right_state)
else:
assert head >= u, "head: {} >= u: {}".format(head, u)
self._backtrack(b, s, u, left_state)
self._backtrack(b, u, t, right_state, head)
return None