-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREWB2.py
774 lines (725 loc) · 33.2 KB
/
REWB2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
"""
Calculate and compare different Within-Between Random Effects models
"""
import numpy as np
import sys
import os.path
import scipy
from scipy.stats import zscore, iqr
import csv
import sklearn
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import random
import statsmodels.api as sm
import meet
import pdb
data_folder = sys.argv[1]
result_folder = sys.argv[2]
N_subjects = 21
# reject behavioral outlier
#iqr_rejection = True
# include general delta [1,4]Hz in SSD calculation
include_delta = False
# convolve to straighten spectrum
include_convolution = False
# target frequencies
snareFreq = 7./6
wdBlkFreq = 7./4
# number of SSD_components to use
N_SSD = 3
# # load the SSD results
# with np.load(os.path.join(result_folder, 'FFTSSD.npz')) as f:
# SSD_eigvals = f['SSD_eigvals']
# SSD_filters = f['SSD_filters']
# SSD_patterns = f['SSD_patterns']
#
# # load the frequency array and inlier
# snareInlier = []
# wdBlkInlier = []
# snareInlier_listen = []
# wdBlkInlier_listen = []
# snareInlier_silence = []
# wdBlkInlier_silence = []
#
# i=0
# while True:
# try:
# with np.load(os.path.join(result_folder, 'F_SSD_inlier.npz'), 'r') as fi:
# f = fi['f']
# snareInlier.append(fi['snareInlier_{:02d}'.format(i)])
# wdBlkInlier.append(fi['wdBlkInlier_{:02d}'.format(i)])
# snareInlier_listen.append(fi['snareInlier_listen_{:02d}'.format(i)])
# wdBlkInlier_listen.append(fi['wdBlkInlier_listen_{:02d}'.format(i)])
# snareInlier_silence.append(fi['snareInlier_silence_{:02d}'.format(i)])
# wdBlkInlier_silence.append(fi['wdBlkInlier_silence_{:02d}'.format(i)])
# # find the index of the frequency array refering to snare and woodblock
# # frequency
# snare_idx = np.argmin((f - snareFreq)**2)
# wdBlk_idx = np.argmin((f - wdBlkFreq)**2)
# harmo_idx = np.argmin((f - 2*wdBlkFreq)**2)
# delta_idx1 = np.argmin((f - 1)**2)
# delta_idx4 = np.argmin((f - 4)**2)
# i+=1
# except KeyError:
# break
#
# # loop through subjects and calculate different SSDs
# F_SSDs = []
# F_SSDs_listen = []
# F_SSDs_silence = []
# # check if there is already a F_SSD file
# if os.path.exists(os.path.join(result_folder, 'F_SSD.npz')):
# i=0
# while True:
# try:
# with np.load(os.path.join(result_folder, 'F_SSD.npz'), 'r') as f:
# F_SSDs.append(f['F_SSD{:02d}'.format(i)])
# F_SSDs_listen.append(f['F_SSD_listen{:02d}'.format(i)])
# F_SSDs_silence.append(f['F_SSD_silence{:02d}'.format(i)])
# i+=1
# except KeyError:
# break
# else: #calculate F_SSDs
# for i in range(1, N_subjects + 1, 1):
# try:
# with np.load(os.path.join(result_folder, 'S%02d' % i)
# + '/prepared_FFTSSD.npz', 'r') as fi:
# # calculate and append SSD for both listening and silence
# F_SSD = np.abs(np.tensordot(SSD_filters, fi['F'], axes=(0,0)))
# delta_F_SSD = np.mean(np.abs(F_SSD[:,delta_idx1:delta_idx4]),
# axis=1)
# if include_delta:
# F_SSD = np.hstack([F_SSD[:N_SSD, (snare_idx,wdBlk_idx)],
# delta_F_SSD[:N_SSD, np.newaxis]])
# elif include_convolution: # straighten spectrum
# F_SSD = scipy.ndimage.convolve1d(
# F_SSD, np.array([-0.25, -0.25, 1, -0.25, -0.25]), axis=1)
# F_SSD = F_SSD - np.min(F_SSD) + 1 #so log works later
# F_SSD = F_SSD[:N_SSD, (snare_idx,wdBlk_idx)]
# else:
# F_SSD = F_SSD[:N_SSD, (snare_idx,wdBlk_idx)]
# F_SSDs.append(F_SSD)
# # calculate and append SSD for listening window
# F_SSD_listen = np.abs(np.tensordot(SSD_filters, fi['F_listen'],
# axes=(0,0)))
# delta_F_SSD = np.mean(np.abs(F_SSD_listen[:,delta_idx1:delta_idx4]),
# axis=1)
# if include_delta:
# F_SSD_listen = np.hstack(
# [F_SSD_listen[:N_SSD, (snare_idx,wdBlk_idx)],
# delta_F_SSD[:N_SSD, np.newaxis]])
# elif include_convolution: # straighten spectrum
# F_SSD_listen = scipy.ndimage.convolve1d(F_SSD_listen,
# np.array([-0.25, -0.25, 1, -0.25, -0.25]), axis=1)
# F_SSD_listen = F_SSD_listen - np.min(F_SSD_listen) + 1 #so log works later
# F_SSD_listen = F_SSD_listen[:N_SSD, (snare_idx,wdBlk_idx)]
# else:
# F_SSD_listen = F_SSD_listen[:N_SSD, (snare_idx,wdBlk_idx)]
# F_SSDs_listen.append(F_SSD_listen)
#
# F_SSD_silence = np.abs(np.tensordot(SSD_filters, fi['F_silence'],
# axes=(0,0)))
# delta_F_SSD = np.mean(np.abs(
# F_SSD_silence[:,delta_idx1:delta_idx4]),axis=1)
# if include_delta:
# F_SSD_silence = np.hstack(
# [F_SSD_silence[:N_SSD, (snare_idx,wdBlk_idx)],
# delta_F_SSD[:N_SSD, np.newaxis]])
# elif include_convolution: # straighten spectrum
# F_SSD_silence = scipy.ndimage.convolve1d(F_SSD_silence,
# np.array([-0.25, -0.25, 1, -0.25, -0.25]), axis=1)
# F_SSD_silence = F_SSD_silence - np.min(F_SSD_silence) + 1 #so log works later
# F_SSD_silence = F_SSD_silence[:N_SSD, (snare_idx,wdBlk_idx)]
# else:
# F_SSD_silence = F_SSD_silence[:N_SSD, (snare_idx,wdBlk_idx)]
# F_SSDs_silence.append(F_SSD_silence)
#
# except:
# print(('Warning: Subject %02d could not be loaded!' %i))
#
# # take absolute value to get EEG amplitude and log to transform
# # to a linear scale
# F_SSDs = [np.log(F_SSD_now) for F_SSD_now in F_SSDs]
# F_SSDs_listen = [np.log(F_SSD_now) for F_SSD_now in F_SSDs_listen]
# F_SSDs_silence = [np.log(F_SSD_now) for F_SSD_now in F_SSDs_silence]
#
# save_results = {}
# for i, (F_SSD_now, F_SSD_listen_now, F_SSD_silence_now) in enumerate(zip(
# F_SSDs, F_SSDs_listen, F_SSDs_silence)):
# save_results['F_SSD{:02d}'.format(i)] = F_SSD_now
# save_results['F_SSD_listen{:02d}'.format(i)] = F_SSD_listen_now
# save_results['F_SSD_silence{:02d}'.format(i)] = F_SSD_silence_now
# np.savez(os.path.join(result_folder, 'F_SSD.npz'), **save_results)
# read the musicality scores of all subjects
# background = {}
# with open(os.path.join(data_folder,'additionalSubjectInfo.csv'),'r') as infile:
# reader = csv.DictReader(infile, fieldnames=None, delimiter=';')
# for row in reader:
# key = row['Subjectnr']
# value = [int(row['LQ']),int(row['MusicQualification']),
# int(row['MusicianshipLevel']),int(row['TrainingYears'])]
# background[key] = value
#
# raw_musicscores = np.array([background['%s' % i]
# for i in list(range(1,11,1)) + list(range(12, 22, 1))]) #exclude subject 11
#
# z_musicscores = (raw_musicscores - np.mean(raw_musicscores,0)
# )/raw_musicscores.std(0)
# musicscore = z_musicscores[:,1:].mean(1) # do not include the LQ
for ssd_type in ['both', 'listen', 'silence']:
# define model name
if include_delta:
delta_str = 'delta_'
else:
delta_str = ''
if include_convolution:
convolve_str = 'convolved_'
else:
convolve_str = ''
print(delta_str + convolve_str + ssd_type)
# # get the performance numbers
# snare_F_SSD = []
# wdBlk_F_SSD = []
# snare_deviation = []
# snare_trial_idx = []
# snare_session_idx = []
# wdBlk_deviation = []
# wdBlk_trial_idx = []
# wdBlk_session_idx = []
#
# subj = 0
# idx = 0
# while True:
# subj += 1
# # divide scaled F_SSD in wdBlk and snare
# if not os.path.exists(os.path.join(
# result_folder, 'S{:02d}'.format(subj), 'behavioural_results.npz')):
# break
# # one subject does not have EEG data - Check and skip that subject
# elif not os.path.exists(os.path.join(
# result_folder, 'S{:02d}'.format(subj), 'prepared_FFTSSD.npz')):
# continue
# else:
# if ssd_type=='both':
# F_SSD = F_SSDs[idx]
# snareInlier_now = snareInlier[idx]
# wdBlkInlier_now = wdBlkInlier[idx]
# if ssd_type=='listen':
# F_SSD = F_SSDs_listen[idx]
# snareInlier_now = snareInlier_listen[idx]
# wdBlkInlier_now = wdBlkInlier_listen[idx]
# if ssd_type=='silence':
# F_SSD = F_SSDs_silence[idx]
# snareInlier_now = snareInlier_silence[idx]
# wdBlkInlier_now = wdBlkInlier_silence[idx]
#
# snare_temp = F_SSD[...,:snareInlier_now.sum()]
# wdBlk_temp = F_SSD[...,snareInlier_now.sum():]
# snare_F_SSD.append(snare_temp.reshape((-1, snare_temp.shape[-1]),
# order='F'))
# wdBlk_F_SSD.append(wdBlk_temp.reshape((-1, wdBlk_temp.shape[-1]),
# order='F'))
# with np.load(os.path.join(result_folder,'S{:02d}'.format(subj),
# 'behavioural_results.npz'), allow_pickle=True,
# encoding='bytes') as fi:
# snare_deviation_now = fi['snare_deviation'][snareInlier_now]
# wdBlk_deviation_now = fi['wdBlk_deviation'][wdBlkInlier_now]
#
# # take only the trials where performance is not nan
# snare_finite = np.isfinite(snare_deviation_now)
# wdBlk_finite = np.isfinite(wdBlk_deviation_now)
# snare_inlier_now = snare_finite #already filtered for snareInlier in line 41 and 96
# wdBlk_inlier_now = wdBlk_finite
#
# # take only the trials in range median ± 1.5*IQR
# if iqr_rejection:
# lb_snare = np.median(snare_deviation_now[snare_finite]
# ) - 1.5*iqr(snare_deviation_now[snare_finite])
# ub_snare = np.median(snare_deviation_now[snare_finite]
# ) + 1.5*iqr(snare_deviation_now[snare_finite])
# idx_iqr_snare = np.logical_and(
# snare_deviation_now>lb_snare, snare_deviation_now<ub_snare)
# snare_inlier_now = np.logical_and(
# snare_finite, idx_iqr_snare)
# lb_wdBlk = np.median(wdBlk_deviation_now[wdBlk_finite]
# ) - 1.5*iqr(wdBlk_deviation_now[wdBlk_finite])
# ub_wdBlk = np.median(wdBlk_deviation_now[wdBlk_finite]
# ) + 1.5*iqr(wdBlk_deviation_now[wdBlk_finite])
# idx_iqr_wdBlk = np.logical_and(
# wdBlk_deviation_now>lb_wdBlk, wdBlk_deviation_now<ub_wdBlk)
# wdBlk_inlier_now = np.logical_and(
# wdBlk_finite, idx_iqr_wdBlk)
#
# snare_deviation.append(
# snare_deviation_now[snare_inlier_now])
# wdBlk_deviation.append(
# wdBlk_deviation_now[wdBlk_inlier_now])
# snare_F_SSD[idx] = snare_F_SSD[idx][:, snare_inlier_now]
# wdBlk_F_SSD[idx] = wdBlk_F_SSD[idx][:, wdBlk_inlier_now]
#
# # get the trial indices
# snare_times = fi['snareCue_times']
# wdBlk_times = fi['wdBlkCue_times']
# all_trial_idx = np.argsort(np.argsort(
# np.r_[snare_times, wdBlk_times]))
# snare_trial_idx_now = all_trial_idx[:len(
# snare_times)][snareInlier_now][snare_inlier_now]
# snare_trial_idx.append(snare_trial_idx_now)
# wdBlk_trial_idx_now = all_trial_idx[len(
# snare_times):][wdBlkInlier_now][wdBlk_inlier_now]
# wdBlk_trial_idx.append(wdBlk_trial_idx_now)
#
# # get the session indices
# snare_session_idx.append(
# np.hstack([i*np.ones_like(session)
# for i, session in enumerate(
# fi['snareCue_nearestClock'])])
# [snareInlier_now][snare_inlier_now])
# wdBlk_session_idx.append(
# np.hstack([i*np.ones_like(session)
# for i, session in enumerate(
# fi['wdBlkCue_nearestClock'])])
# [wdBlkInlier_now][wdBlk_inlier_now])
# idx += 1
# start interface to R
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr
base = importr('base')
stats = importr('stats')
parameters = importr('parameters')
lme4 = importr('lme4')
sjPlot = importr('sjPlot')
datawizard = importr('datawizard')
# snare_subject = np.hstack([np.ones(F_SSD_now.shape[-1], int)*(i + 1)
# for i, F_SSD_now in enumerate(snare_F_SSD)])
#
# snare_SubjToTrials = np.unique(snare_subject, return_inverse=True)[1]
EEG_labels = (['Snare{}'.format(i+1) for i in range(N_SSD)] +
['WdBlk{}'.format(i+1) for i in range(N_SSD)])
if include_delta:
EEG_labels = EEG_labels + ['Delta{}'.format(i+1) for i in range(N_SSD)]
# wdBlk_subject = np.hstack([np.ones(F_SSD_now.shape[-1], int)*(i + 1)
# for i, F_SSD_now in enumerate(wdBlk_F_SSD)])
#
# wdBlk_SubjToTrials = np.unique(wdBlk_subject, return_inverse=True)[1]
###########################################
# load all the data into rpy2 R interface #
###########################################
# ! csv also contains delta and convolve data, but we dont need it so I
# did not include it here yet
snare_F_SSD_between = []
snare_F_SSD_within = []
snare_deviation = []
snare_trial_idx = []
snare_session_idx = []
snare_subj = []
snare_musicality = []
with open(os.path.join(
result_folder,'snare_data_{}.csv'.format(ssd_type)),'r') as snarefile:
reader = csv.DictReader(snarefile, fieldnames=None)
for row in reader:
snare_F_SSD_between.append(
(float(row['Snare1_between']),
float(row['Snare2_between']),
float(row['Snare3_between']),
float(row['WdBlk1_between']),
float(row['WdBlk2_between']),
float(row['WdBlk3_between'])))
snare_F_SSD_within.append(
(float(row['Snare1_within']),
float(row['Snare2_within']),
float(row['Snare3_within']),
float(row['WdBlk1_within']),
float(row['WdBlk2_within']),
float(row['WdBlk3_within'])))
snare_deviation.append(float(row['deviation']))
snare_trial_idx.append(int(row['trial']))
snare_session_idx.append(int(row['session']))
snare_subj.append(int(row['subject']))
snare_musicality.append(float(row['musicality']))
snare_data = {}
for i,l in enumerate(EEG_labels):
snare_data[l+'_between'] = robjects.vectors.FloatVector(
np.hstack([F_SSD_now[i] for F_SSD_now in snare_F_SSD_between]))
snare_data[l+'_within'] = robjects.vectors.FloatVector(
np.hstack([F_SSD_now[i] for F_SSD_now in snare_F_SSD_within]))
snare_data['subject'] = robjects.vectors.FloatVector(snare_subj)
snare_data['musicality'] = robjects.vectors.FloatVector(snare_musicality)
snare_data['trial'] = robjects.vectors.FloatVector(snare_trial_idx)
snare_data['session'] = robjects.vectors.FloatVector(snare_session_idx)
snare_data['precision'] = robjects.vectors.FloatVector(np.abs(snare_deviation))
wdBlk_F_SSD_between = []
wdBlk_F_SSD_within = []
wdBlk_deviation = []
wdBlk_trial_idx = []
wdBlk_session_idx = []
wdBlk_subj = []
wdBlk_musicality = []
with open(os.path.join(
result_folder,'wdBlk_data_{}.csv'.format(ssd_type)),'r') as wdBlkfile:
reader = csv.DictReader(wdBlkfile, fieldnames=None)
for row in reader:
wdBlk_F_SSD_between.append(
(float(row['Snare1_between']),
float(row['Snare2_between']),
float(row['Snare3_between']),
float(row['WdBlk1_between']),
float(row['WdBlk2_between']),
float(row['WdBlk3_between'])))
wdBlk_F_SSD_within.append(
(float(row['Snare1_within']),
float(row['Snare2_within']),
float(row['Snare3_within']),
float(row['WdBlk1_within']),
float(row['WdBlk2_within']),
float(row['WdBlk3_within'])))
wdBlk_deviation.append(float(row['deviation']))
wdBlk_trial_idx.append(int(row['trial']))
wdBlk_session_idx.append(int(row['session']))
wdBlk_subj.append(int(row['subject']))
wdBlk_musicality.append(float(row['musicality']))
wdBlk_data = {}
for i,l in enumerate(EEG_labels):
wdBlk_data[l+'_between'] = robjects.vectors.FloatVector(
np.hstack([F_SSD_now[i] for F_SSD_now in wdBlk_F_SSD_between]))
wdBlk_data[l+'_within'] = robjects.vectors.FloatVector(
np.hstack([F_SSD_now[i] for F_SSD_now in wdBlk_F_SSD_within]))
wdBlk_data['subject'] = robjects.vectors.FloatVector(wdBlk_subj)
wdBlk_data['musicality'] = robjects.vectors.FloatVector(wdBlk_musicality)
wdBlk_data['trial'] = robjects.vectors.FloatVector(wdBlk_trial_idx)
wdBlk_data['session'] = robjects.vectors.FloatVector(wdBlk_session_idx)
wdBlk_data['precision'] = robjects.vectors.FloatVector(np.abs(wdBlk_deviation))
# # add EEG
# for i,l in enumerate(EEG_labels):
# snare_data[l] = robjects.vectors.FloatVector(
# np.hstack([F_SSD_now[i] for F_SSD_now in snare_F_SSD]))
# wdBlk_data[l] = robjects.vectors.FloatVector(
# np.hstack([F_SSD_now[i] for F_SSD_now in wdBlk_F_SSD]))
# # add subject index
# snare_data['subject'] = robjects.vectors.IntVector(
# np.arange(len(snare_F_SSD))[snare_SubjToTrials])
# wdBlk_data['subject'] = robjects.vectors.IntVector(
# np.arange(len(wdBlk_F_SSD))[wdBlk_SubjToTrials])
# # add musicality
# snare_data['musicality'] = robjects.vectors.FloatVector(
# musicscore[snare_SubjToTrials])
# wdBlk_data['musicality'] = robjects.vectors.FloatVector(
# musicscore[wdBlk_SubjToTrials])
# # add trial index (no log)
# snare_data['trial'] = robjects.vectors.FloatVector(
# np.hstack(snare_trial_idx) + 1)
# wdBlk_data['trial'] = robjects.vectors.FloatVector(
# np.hstack(wdBlk_trial_idx) + 1)
# # add session index (no log) and precision
# snare_data['session'] = robjects.vectors.FloatVector(
# np.hstack(snare_session_idx) + 1)
# snare_data['precision'] = robjects.vectors.FloatVector(
# np.log(np.abs(np.hstack(snare_deviation))))
# wdBlk_data['session'] = robjects.vectors.FloatVector(
# np.hstack(wdBlk_session_idx) + 1)
# wdBlk_data['precision'] = robjects.vectors.FloatVector(
# np.log(np.abs(np.hstack(wdBlk_deviation))))
Rsnare_data = base.data_frame(**snare_data)
RwdBlk_data = base.data_frame(**wdBlk_data)
# not needed because already in csv
# # add within and between variables to the data frame
# Rsnare_data = base.cbind(
# Rsnare_data,
# parameters.demean(
# Rsnare_data,
# select = base.c(*(EEG_labels + ['precision'])),
# group = 'subject'))
# RwdBlk_data = base.cbind(
# RwdBlk_data,
# parameters.demean(
# RwdBlk_data,
# select = base.c(*(EEG_labels + ['precision'])),
# group = 'subject'))
# # standardize, this took some googling, since R's scale function from rpy2
# # returnd just a Matrix and not a data frame
Rsnare_data = datawizard.standardize(Rsnare_data)
RwdBlk_data = datawizard.standardize(RwdBlk_data)
#################################
# generate the necessary models #
#################################
snare_models = {}
wdBlk_models = {}
for data in [Rsnare_data, RwdBlk_data]:
models = {}
if data == Rsnare_data:
condition = ('snare', 'Snare')
else:
condition = ('wdBlk', 'WdBlk')
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_between' for l in EEG_labels]) +
' + musicality + trial + session',
data = data)
if np.any(np.isnan(robjects.r.coef(model_now))): # nan in ceof <=> model singular
models['fe_b_sing'] = model_now
else:
models['fe_b'] = model_now
if include_delta:
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session',
data = data)
else:
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session',
data = data)
if np.any(np.isnan(robjects.r.coef(model_now))): # nan in ceof <=> model singular
models['fe_b_only{}_sing'.format(condition[0])] = model_now
else:
models['fe_b_only{}'.format(condition[0])] = model_now
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels]) +
' + musicality + trial + session',
data = data)
if np.any(np.isnan(robjects.r.coef(model_now))): # nan in ceof <=> model singular
models['fe_w_sing'] = model_now
else:
models['fe_w'] = model_now
if include_delta:
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session',
data = data)
else:
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session',
data = data)
if np.any(np.isnan(robjects.r.coef(model_now))): # nan in ceof <=> model singular
models['fe_w_only{}_sing'.format(condition[0])] = model_now
else:
models['fe_w_only{}'.format(condition[0])] = model_now
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels]) +
' + musicality + trial + session',
data = data)
if np.any(np.isnan(robjects.r.coef(model_now))): # nan in ceof <=> model singular
models['fe_wb_sing'] = model_now
else:
models['fe_wb'] = model_now
if include_delta:
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session',
data = data)
else:
model_now = stats.lm(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith(condition[1])]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session',
data = data)
if np.any(np.isnan(robjects.r.coef(model_now))): # nan in ceof <=> model singular
models['fe_wb_only{}_sing'.format(condition[0])] = model_now
else:
models['fe_wb_only{}'.format(condition[0])] = model_now
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_between' for l in EEG_labels]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_b_i_sing'] = model_now
else:
models['lme_b_i'] = model_now
if include_delta:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
else:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_b_i_only{}_sing'.format(condition[0])] = model_now
else:
models['lme_b_i_only{}'.format(condition[0])] = model_now
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0] == '':
models['lme_w_i_sing'] = model_now
else:
models['lme_w_i'] = model_now
if include_delta:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
else:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_w_i_only{}_sing'.format(condition[0])] = model_now
else:
models['lme_w_i_only{}'.format(condition[0])] = model_now
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_wb_i_sing'] = model_now
else:
models['lme_wb_i'] = model_now
if include_delta:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
else:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith(condition[1])]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session + ' +
'(1 | subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_wb_i_only{}_sing'.format(condition[0])] = model_now
else:
models['lme_wb_i_only{}'.format(condition[0])] = model_now
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels]) +
' + musicality + trial + session + ' +
'(1 + ' +
' + '.join([l + '_within' for l in EEG_labels]) +
'| subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_wb_is_sing'] = model_now
else:
models['lme_wb_is'] = model_now
if include_delta:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith((condition[1], 'Delta'))]) +
' + musicality + trial + session + ' +
'(1 + ' +
' + '.join([l + '_within' for l in EEG_labels]) +
'| subject)',
data = data, REML=False)
else:
model_now = lme4.lmer(
'precision ~ ' + '0 + ' +
' + '.join([l + '_within' for l in EEG_labels
if l.startswith(condition[1])]) + ' + ' +
' + '.join([l + '_between' for l in EEG_labels
if l.startswith(condition[1])]) +
' + musicality + trial + session + ' +
'(1 + ' +
' + '.join([l + '_within' for l in EEG_labels]) +
'| subject)',
data = data, REML=False)
if lme4.isSingular(model_now, tol = 1e-4)[0]:
models['lme_wb_is_only{}_sing'.format(condition[0])] = model_now
else:
models['lme_wb_is_only{}'.format(condition[0])] = model_now
if data==Rsnare_data:
snare_models = models
else:
wdBlk_models = models
# get the best model using the AIC
AIC = {}
for key, value in snare_models.items():
AIC[key] = stats.AIC(value)[0]
AIC_wb = {}
for key, value in wdBlk_models.items():
AIC_wb[key] = stats.AIC(value)[0]
best_snare_model = min(AIC, key=AIC.get)
best_wdBlk_model = min(AIC_wb, key=AIC_wb.get)
print('best snare: {}'.format(best_snare_model))
print('best wdBlk: {}'.format(best_wdBlk_model))
#######################################################################
# tabulating the results from rpy2 does not seem to work, so we need #
# to import the model names to the R environment and save the models #
# to make the last step in R itself
#######################################################################
# store snare
for key, value in snare_models.items():
base.assign(key, value)
robjects.r("save({}, file='snare_models.rds')".format(
', '.join(snare_models.keys())))
#Now, the data can be opend and tabulated in R
with open('tabulate_snare_models.r', 'w') as f:
f.writelines("library(sjPlot)" + "\n")
f.writelines("load(file='snare_models.rds')" + "\n")
f.writelines("tab_model({}, show.aic=TRUE, show.re.var=FALSE, show.ci=FALSE, show.icc=FALSE, dv.labels=c('{}'), file='Results/models/snare_{}.html')".format(
", ".join(snare_models.keys()),
"', '".join(snare_models.keys()),
delta_str+convolve_str+ssd_type
))
os.system('Rscript tabulate_snare_models.r')
# store wdBlk
for key, value in wdBlk_models.items():
base.assign(key, value)
robjects.r("save({}, file='wdBlk_models.rds')".format(
', '.join(wdBlk_models.keys())))
#Now, the data can be opend and tabulated in R
with open('tabulate_wdBlk_models.r', 'w') as f:
f.writelines("library(sjPlot)" + "\n")
f.writelines("load(file='wdBlk_models.rds')" + "\n")
f.writelines("tab_model({}, show.aic=TRUE, show.re.var=FALSE, show.ci=FALSE, show.icc=FALSE, dv.labels=c('{}'), file='Results/models/wdBlk_{:s}.html')".format(
", ".join(wdBlk_models.keys()),
"', '".join(wdBlk_models.keys()),
delta_str+convolve_str+ssd_type
))
os.system('Rscript tabulate_wdBlk_models.r')