-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch3.aux
335 lines (335 loc) · 27.8 KB
/
ch3.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\zref@newlabel[2]{}
\citation{classicaldynamics}
\citation{lagrange-formalism}
\citation{autonomousrobotseuler}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Kinematics and Dynamics}{45}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:dynamics}{{3}{45}{Kinematics and Dynamics}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Rigid Body Dynamics}{45}{section.3.1}}
\newlabel{sec:dynamics.rigidbody}{{3.1}{45}{Rigid Body Dynamics}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Lagrange Derivation}{45}{subsection.3.1.1}}
\newlabel{subsec:dynamics.rigidbody.lagrange}{{3.1.1}{45}{Lagrange Derivation}{subsection.3.1.1}{}}
\newlabel{eq:generalpath}{{3.1}{45}{Lagrange Derivation}{equation.3.1.1}{}}
\newlabel{eq:lagrangian.a}{{3.2a}{45}{Lagrange Derivation}{equation.3.1.1}{}}
\citation{reynolds}
\newlabel{eq:grav}{{3.2b}{46}{Lagrange Derivation}{equation.3.1.2}{}}
\newlabel{eq:lagrangian.b}{{3.2c}{46}{Lagrange Derivation}{equation.3.1.3}{}}
\newlabel{eq:euler-lagrange}{{3.3}{46}{Lagrange Derivation}{equation.3.1.3}{}}
\newlabel{eq:partial.a}{{3.4a}{46}{Lagrange Derivation}{equation.3.1.1}{}}
\newlabel{eq:partial.b}{{3.4b}{46}{Lagrange Derivation}{equation.3.1.2}{}}
\newlabel{eq:reynolds}{{3.5}{46}{Lagrange Derivation}{equation.3.1.5}{}}
\newlabel{eq:path-def}{{3.6}{46}{Lagrange Derivation}{equation.3.1.6}{}}
\newlabel{eq:path-def.a}{{3.6a}{46}{Lagrange Derivation}{equation.3.1.1}{}}
\newlabel{eq:3.7a}{{3.7}{46}{Lagrange Derivation}{equation.3.1.7}{}}
\citation{autonomousrobotseuler}
\newlabel{eq:newton}{{3.9}{47}{Lagrange Derivation}{equation.3.1.9}{}}
\newlabel{eq:newton.a}{{3.9b}{47}{Lagrange Derivation}{equation.3.1.2}{}}
\newlabel{eq:newton.b}{{3.9c}{47}{Lagrange Derivation}{equation.3.1.3}{}}
\newlabel{eq:states}{{3.10}{47}{Lagrange Derivation}{equation.3.1.10}{}}
\newlabel{eq:states.a}{{3.10a}{47}{Lagrange Derivation}{equation.3.1.1}{}}
\newlabel{eq:states.b}{{3.10b}{47}{Lagrange Derivation}{equation.3.1.2}{}}
\newlabel{eq:states.c}{{3.10c}{47}{Lagrange Derivation}{equation.3.1.3}{}}
\newlabel{eq:states.d}{{3.10d}{47}{Lagrange Derivation}{equation.3.1.4}{}}
\newlabel{eq:3.11}{{3.11}{47}{Lagrange Derivation}{equation.3.1.11}{}}
\newlabel{eq:nonlinear}{{3.13}{47}{Lagrange Derivation}{equation.3.1.13}{}}
\newlabel{eq:nonlinear.a}{{3.13a}{47}{Lagrange Derivation}{equation.3.1.1}{}}
\newlabel{eq:nonlinear.b}{{3.13b}{47}{Lagrange Derivation}{equation.3.1.2}{}}
\newlabel{eq:nonlinear.c}{{3.13c}{47}{Lagrange Derivation}{equation.3.1.3}{}}
\citation{x4flyer}
\newlabel{eq:rigid-frame}{{3.14}{48}{Lagrange Derivation}{equation.3.1.14}{}}
\newlabel{eq:rigid-frame.a}{{3.14a}{48}{Lagrange Derivation}{equation.3.1.1}{}}
\newlabel{eq:rigid-frame.b}{{3.14b}{48}{Lagrange Derivation}{equation.3.1.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Generalized quadrotor net forces and torques\relax }}{48}{figure.caption.47}}
\newlabel{fig:net-force}{{3.1}{48}{Generalized quadrotor net forces and torques\relax }{figure.caption.47}{}}
\newlabel{eq:generalized-net-forces}{{3.15}{48}{Lagrange Derivation}{equation.3.1.15}{}}
\citation{bem,forwarddescent}
\citation{bladesforquadrotors}
\citation{nonlineardynamics}
\citation{configurationpropulsion}
\citation{variablepitch}
\citation{variablepitch}
\citation{bladesforquadrotors}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Aerodynamics}{49}{section.3.2}}
\newlabel{sec:dynamics.aero}{{3.2}{49}{Aerodynamics}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Propeller Torque and Thrust}{49}{subsection.3.2.1}}
\newlabel{subsec:dynamics.aero.bem}{{3.2.1}{49}{Propeller Torque and Thrust}{subsection.3.2.1}{}}
\newlabel{fig:fixed-pitch}{{3.2a}{49}{Twisted, fixed pitch\relax }{figure.caption.48}{}}
\newlabel{sub@fig:fixed-pitch}{{a}{49}{Twisted, fixed pitch\relax }{figure.caption.48}{}}
\newlabel{fig:variable-pitch}{{3.2b}{49}{Swash-plate variable pitch; \cite {variablepitch}\relax }{figure.caption.48}{}}
\newlabel{sub@fig:variable-pitch}{{b}{49}{Swash-plate variable pitch; \cite {variablepitch}\relax }{figure.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Propeller types\relax }}{49}{figure.caption.48}}
\newlabel{fig:props}{{3.2}{49}{Propeller types\relax }{figure.caption.48}{}}
\citation{fluidmomentum,propellers}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Disc Actuator Propeller Planar Flow\relax }}{50}{figure.caption.49}}
\newlabel{fig:bem-flow}{{3.3}{50}{Disc Actuator Propeller Planar Flow\relax }{figure.caption.49}{}}
\newlabel{eq:bernoulli}{{3.17}{50}{Propeller Torque and Thrust}{equation.3.2.17}{}}
\newlabel{eq:prop-mass}{{3.18}{50}{Propeller Torque and Thrust}{equation.3.2.18}{}}
\newlabel{eq:induction-factors}{{3.19}{50}{Propeller Torque and Thrust}{equation.3.2.19}{}}
\newlabel{eq:induction-axial}{{3.19a}{50}{Propeller Torque and Thrust}{equation.3.2.1}{}}
\newlabel{eq:induction-tangential}{{3.19b}{50}{Propeller Torque and Thrust}{equation.3.2.2}{}}
\newlabel{eq:prop-moment}{{3.21}{50}{Propeller Torque and Thrust}{equation.3.2.21}{}}
\citation{starmac}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Blade element profile at radius r\relax }}{51}{figure.caption.50}}
\newlabel{fig:bem-profile}{{3.4}{51}{Blade element profile at radius r\relax }{figure.caption.50}{}}
\newlabel{eq:3.25a}{{3.25}{51}{Propeller Torque and Thrust}{equation.3.2.25}{}}
\newlabel{eq:element-thrust}{{3.26a}{51}{Propeller Torque and Thrust}{equation.3.2.1}{}}
\newlabel{eq:element-drag}{{3.26b}{51}{Propeller Torque and Thrust}{equation.3.2.2}{}}
\newlabel{eq:element-torque}{{3.26c}{51}{Propeller Torque and Thrust}{equation.3.2.3}{}}
\newlabel{eq:element-power}{{3.26d}{51}{Propeller Torque and Thrust}{equation.3.2.4}{}}
\citation{aerodynamicsforengineering}
\citation{UIUC}
\citation{lowreynolds}
\citation{UIUC}
\newlabel{eq:moment-thrust-element}{{3.27}{52}{Propeller Torque and Thrust}{equation.3.2.27}{}}
\newlabel{eq:lift-curve-gradient}{{3.29}{52}{Propeller Torque and Thrust}{equation.3.2.29}{}}
\newlabel{eq:bem-thrust}{{3.31a}{52}{Propeller Torque and Thrust}{equation.3.2.1}{}}
\newlabel{eq:bem-power}{{3.31b}{52}{Propeller Torque and Thrust}{equation.3.2.2}{}}
\newlabel{eq:coefficients}{{3.32}{52}{Propeller Torque and Thrust}{equation.3.2.32}{}}
\newlabel{eq:thrust-coefficient}{{3.32a}{52}{Propeller Torque and Thrust}{equation.3.2.1}{}}
\newlabel{eq:power-coefficient}{{3.32b}{52}{Propeller Torque and Thrust}{equation.3.2.2}{}}
\newlabel{eq:advance}{{3.33}{52}{Propeller Torque and Thrust}{equation.3.2.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Thrust and power coefficients\relax }}{53}{figure.caption.51}}
\newlabel{fig:coeffs-plot}{{3.5}{53}{Thrust and power coefficients\relax }{figure.caption.51}{}}
\newlabel{fig:thrust-rig}{{3.6a}{53}{Propeller thrust test rig\relax }{figure.caption.52}{}}
\newlabel{sub@fig:thrust-rig}{{a}{53}{Propeller thrust test rig\relax }{figure.caption.52}{}}
\newlabel{fig:thrust-plot}{{3.6b}{53}{Static lift force results\relax }{figure.caption.52}{}}
\newlabel{sub@fig:thrust-plot}{{b}{53}{Static lift force results\relax }{figure.caption.52}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Propeller thrust tests\relax }}{53}{figure.caption.52}}
\newlabel{fig:thrusts}{{3.6}{53}{Propeller thrust tests\relax }{figure.caption.52}{}}
\citation{UIUC}
\citation{basichelicopter,bramwell}
\newlabel{fig:torque-rig}{{3.7a}{54}{Aerodynamic drag torque test rig\relax }{figure.caption.53}{}}
\newlabel{sub@fig:torque-rig}{{a}{54}{Aerodynamic drag torque test rig\relax }{figure.caption.53}{}}
\newlabel{fig:torque-plot}{{3.7b}{54}{Torque plot\relax }{figure.caption.53}{}}
\newlabel{sub@fig:torque-plot}{{b}{54}{Torque plot\relax }{figure.caption.53}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Static induced torque results\relax }}{54}{figure.caption.53}}
\newlabel{fig:torques}{{3.7}{54}{Static induced torque results\relax }{figure.caption.53}{}}
\newlabel{eq:normal-fluid}{{3.35}{54}{Propeller Torque and Thrust}{equation.3.2.35}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Hinged Propeller Conning and Flapping}{54}{subsection.3.2.2}}
\newlabel{subsec:dynamics.aero.flap}{{3.2.2}{54}{Hinged Propeller Conning and Flapping}{subsection.3.2.2}{}}
\citation{starmac}
\citation{starmac}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Propeller blade flapping; \cite {starmac}\relax }}{55}{figure.caption.54}}
\newlabel{fig:prop-flap}{{3.8}{55}{Propeller blade flapping; \cite {starmac}\relax }{figure.caption.54}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Propeller coning\relax }}{55}{figure.caption.55}}
\newlabel{fig:prop-coning}{{3.9}{55}{Propeller coning\relax }{figure.caption.55}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Drag}{56}{subsection.3.2.3}}
\newlabel{subsec:dynamics.aero.drag}{{3.2.3}{56}{Drag}{subsection.3.2.3}{}}
\newlabel{eq:distrubance}{{3.36}{56}{Drag}{equation.3.2.36}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Quaternion Attitude}{56}{section.3.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Rotation Matrix Singularity}{56}{subsection.3.3.1}}
\newlabel{subsec:dynamics.rigidbody.singularity}{{3.3.1}{56}{Rotation Matrix Singularity}{subsection.3.3.1}{}}
\citation{euleranglesingularity}
\citation{rotationsequences,spacecraftattitutdequaternions}
\citation{shoemake}
\newlabel{fig:gimbal}{{3.10a}{57}{3-Axis gimbal\relax }{figure.caption.56}{}}
\newlabel{sub@fig:gimbal}{{a}{57}{3-Axis gimbal\relax }{figure.caption.56}{}}
\newlabel{fig:gimbal-lock}{{3.10b}{57}{Locked gimbal with loss of DOF\relax }{figure.caption.56}{}}
\newlabel{sub@fig:gimbal-lock}{{b}{57}{Locked gimbal with loss of DOF\relax }{figure.caption.56}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces Mechanical gimbal lock\relax }}{57}{figure.caption.56}}
\newlabel{eq:euler-derivative}{{3.38}{57}{Rotation Matrix Singularity}{equation.3.3.38}{}}
\newlabel{eq:gimbal}{{3.41e}{57}{Rotation Matrix Singularity}{equation.3.3.5}{}}
\citation{unwinding}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Quaternion Dynamics}{58}{subsection.3.3.2}}
\newlabel{subsec:dynamics.rigidbody.quaternion}{{3.3.2}{58}{Quaternion Dynamics}{subsection.3.3.2}{}}
\newlabel{eq:rodriguez}{{3.43}{58}{Quaternion Dynamics}{equation.3.3.43}{}}
\newlabel{eq:quaternion-operator}{{3.45b}{58}{Quaternion Dynamics}{equation.3.3.2}{}}
\newlabel{eq:quaternion-product}{{3.45c}{58}{Quaternion Dynamics}{equation.3.3.3}{}}
\newlabel{eq:quaternion-conjugate}{{3.46}{58}{Quaternion Dynamics}{equation.3.3.46}{}}
\newlabel{eq:quaternion-rotation}{{3.49}{58}{Quaternion Dynamics}{equation.3.3.49}{}}
\citation{fullquaternion}
\citation{unwinding}
\newlabel{eq:quaternion-sequence}{{3.51}{59}{Quaternion Dynamics}{equation.3.3.51}{}}
\newlabel{eq:quaternion-deriv}{{3.52}{59}{Quaternion Dynamics}{equation.3.3.52}{}}
\newlabel{eq:euler-error}{{3.55}{59}{Quaternion Dynamics}{equation.3.3.55}{}}
\newlabel{eq:quaternion-error}{{3.56}{59}{Quaternion Dynamics}{equation.3.3.56}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Quaternion Unwinding}{59}{subsection.3.3.3}}
\newlabel{subsec:dynamics.rigidbody.unwinding}{{3.3.3}{59}{Quaternion Unwinding}{subsection.3.3.3}{}}
\citation{nonlinearquadcopter}
\citation{intelligentbackstep}
\newlabel{eq:quaternion-euler-axis}{{3.57}{60}{Quaternion Unwinding}{equation.3.3.57}{}}
\newlabel{eq:euler-quaternion}{{3.58c}{60}{Quaternion Unwinding}{equation.3.3.3}{}}
\newlabel{eq:signum-unwinding}{{3.60}{60}{Quaternion Unwinding}{equation.3.3.60}{}}
\citation{inertiaspin}
\citation{physicallybased,multibodydynamics}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}Multibody Nonlinearities}{61}{section.3.4}}
\newlabel{sec:dynamics.nonlinearities}{{3.4}{61}{Multibody Nonlinearities}{section.3.4}{}}
\newlabel{eq:angular-multibody}{{3.61}{61}{Multibody Nonlinearities}{equation.3.4.61}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.1}Relative Rotational Gyroscopic and Inertia Torques}{61}{subsection.3.4.1}}
\newlabel{subsec:dynamics.nonlinearities.gyrotorques}{{3.4.1}{61}{Relative Rotational Gyroscopic and Inertia Torques}{subsection.3.4.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces Exploded inner ring inertial bodies for $\mathaccentV {vec}17E{\tau }_\lambda (\lambda _i)$\relax }}{62}{figure.caption.57}}
\newlabel{fig:response-inner}{{3.11}{62}{Exploded inner ring inertial bodies for $\vec {\tau }_\lambda (\lambda _i)$\relax }{figure.caption.57}{}}
\newlabel{eq:angular-rot}{{3.63}{62}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.63}{}}
\newlabel{eq:angular-inner}{{3.64}{62}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.64}{}}
\newlabel{eq:lagrange-inner}{{3.65}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.65}{}}
\newlabel{eq:lagrange-inner.a}{{3.65a}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:lagrange-inner.b}{{3.65c}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:euler-lagrange-inner}{{3.66}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.66}{}}
\newlabel{eq:euler-lagrange-inner-partial}{{3.67}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.67}{}}
\newlabel{eq:partial-rotation}{{3.68}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.68}{}}
\newlabel{eq:rotation-partial}{{3.68a}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:rotation-xaxis-partial}{{3.68b}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:rotation-xaxis-transpose-partial}{{3.68c}{63}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:euler-lagrange-inner-partial}{{3.69}{64}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.69}{}}
\newlabel{eq:3.42b}{{3.70}{64}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.70}{}}
\newlabel{eq:inertial-rate-def}{{3.71d}{64}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.4}{}}
\newlabel{eq:rotor-deriv}{{3.72}{64}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.72}{}}
\newlabel{eq:inner-deriv}{{3.73}{64}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.73}{}}
\newlabel{eq:generalized-inner}{{3.75a}{65}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:torque-induced-inner}{{3.76}{65}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.76}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces Exploded middle ring inertial bodies for $\mathaccentV {vec}17E{\tau }_{\alpha }(\lambda _i,\alpha _i)$\relax }}{65}{figure.caption.58}}
\newlabel{fig:response-middle}{{3.12}{65}{Exploded middle ring inertial bodies for $\vec {\tau }_{\alpha }(\lambda _i,\alpha _i)$\relax }{figure.caption.58}{}}
\newlabel{eq:rotor-inertia-mid}{{3.77a}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:rotor-inertia-rate}{{3.77b}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:inner-inertia-mid}{{3.78a}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:inner-inertia-rate}{{3.78b}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:middle-inertia-mid}{{3.79a}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:middle-inertia-relation}{{3.79c}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:middle-inertia-rate}{{3.79e}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.5}{}}
\newlabel{eq:rotor-relative}{{3.80}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.80}{}}
\newlabel{eq:inner-relative}{{3.81}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.81}{}}
\newlabel{eq:middle-relative}{{3.82}{66}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.82}{}}
\newlabel{eq:alpha-lagrange}{{3.83}{67}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.83}{}}
\newlabel{eq:alpha-lagrange-two}{{3.84}{67}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.84}{}}
\newlabel{eq:3.86b}{{3.86b}{67}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:alpha-lagrange-deriv}{{3.86c}{67}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:3.63f}{{3.86f}{68}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.6}{}}
\newlabel{eq:3.86g}{{3.86g}{68}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.7}{}}
\newlabel{eq:torque-induced-middle}{{3.87}{68}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.87}{}}
\newlabel{eq:torque-response}{{3.88}{68}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.88}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Rotating system\relax }}{69}{figure.caption.59}}
\newlabel{fig:lemma-1}{{3.13}{69}{Rotating system\relax }{figure.caption.59}{}}
\newlabel{fig:lemma-a}{{3.14a}{69}{Rotational body\relax }{figure.caption.60}{}}
\newlabel{sub@fig:lemma-a}{{a}{69}{Rotational body\relax }{figure.caption.60}{}}
\newlabel{fig:lemma-b}{{3.14b}{69}{Massless rod\relax }{figure.caption.60}{}}
\newlabel{sub@fig:lemma-b}{{b}{69}{Massless rod\relax }{figure.caption.60}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Free-body diagram for rotational system\relax }}{69}{figure.caption.60}}
\newlabel{fig:lemma}{{3.14}{69}{Free-body diagram for rotational system\relax }{figure.caption.60}{}}
\newlabel{eq:lemma-lagrange}{{3.94b}{70}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:lemma-torque}{{3.94g}{70}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.7}{}}
\newlabel{lem:1}{{3.4.0.1}{70}{}{axiom.3.4.0.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Exploded motor module inertial bodies for $\mathaccentV {vec}17E{\omega }_b$ response\relax }}{71}{figure.caption.61}}
\newlabel{fig:response-body}{{3.15}{71}{Exploded motor module inertial bodies for $\vec {\omega }_b$ response\relax }{figure.caption.61}{}}
\newlabel{eq:module-inertia-body}{{3.95}{71}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.95}{}}
\newlabel{eq:body-rotor-rate}{{3.96b}{71}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:body-inner-rate}{{3.96c}{71}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:body-middle-rate}{{3.96d}{71}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.4}{}}
\newlabel{eq:body-rotor-angular}{{3.97}{71}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.97}{}}
\newlabel{eq:body-inner-angular}{{3.98}{72}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.98}{}}
\newlabel{eq:body-middle-angular}{{3.99}{72}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.99}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Illustration of rotated center of gravity $\mathaccentV {vec}17E{C}_\text {p}\text {}\hspace {-2pt}''(\lambda _i,\alpha _i)$\relax }}{72}{figure.caption.62}}
\newlabel{fig:vector-diff}{{3.16}{72}{Illustration of rotated center of gravity $\vec {C}_\text {p}\text {}\hspace {-2pt}''(\lambda _i,\alpha _i)$\relax }{figure.caption.62}{}}
\newlabel{eq:module-point-mass}{{3.101a}{73}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:module-point-mass-rate}{{3.101c}{73}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:lagrange-module-body}{{3.104a}{73}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:104c}{{3.104c}{74}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:module-forces-w}{{3.104e}{74}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.5}{}}
\newlabel{eq:module-inertia-rates}{{3.105c}{74}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\newlabel{eq:module-response}{{3.106}{74}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.106}{}}
\newlabel{eq:structure-response}{{3.107}{75}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.107}{}}
\newlabel{eq:3.85}{{3.108}{75}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.108}{}}
\newlabel{eq:3.109}{{3.109}{75}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.109}{}}
\newlabel{eq:3.110a}{{3.110a}{75}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.1}{}}
\newlabel{eq:net-body-response}{{3.110b}{75}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.2}{}}
\newlabel{eq:net-body-gravity}{{3.110c}{75}{Relative Rotational Gyroscopic and Inertia Torques}{equation.3.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.2}Verification and simulation of induced model}{76}{subsection.3.4.2}}
\newlabel{subsec:dynamics.nonlinearities.torque-tests}{{3.4.2}{76}{Verification and simulation of induced model}{subsection.3.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Dynamic model verification}{76}{subsection.3.4.2}}
\newlabel{subsubsec:dynamicmodel}{{3.4.2}{76}{Dynamic model verification}{subsection.3.4.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Inner ring torque test rig\relax }}{76}{figure.caption.63}}
\newlabel{fig:torque-inner}{{3.17}{76}{Inner ring torque test rig\relax }{figure.caption.63}{}}
\newlabel{eq:tau-lambda-prime}{{3.112}{76}{Dynamic model verification}{equation.3.4.112}{}}
\newlabel{eq:model-inner}{{3.113}{77}{Dynamic model verification}{equation.3.4.113}{}}
\newlabel{fig:tau-lambda}{{3.18a}{77}{Physical induced $\vec {\tau }_\lambda \hspace {-1pt}'$ torque\relax }{figure.caption.64}{}}
\newlabel{sub@fig:tau-lambda}{{a}{77}{Physical induced $\vec {\tau }_\lambda \hspace {-1pt}'$ torque\relax }{figure.caption.64}{}}
\newlabel{fig:tau-lambda-r}{{3.18b}{77}{$\sqrt {R^2_{\lambda }}$ errors for $\vec {\tau }_\lambda \hspace {-1pt}'$\relax }{figure.caption.64}{}}
\newlabel{sub@fig:tau-lambda-r}{{b}{77}{$\sqrt {R^2_{\lambda }}$ errors for $\vec {\tau }_\lambda \hspace {-1pt}'$\relax }{figure.caption.64}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Inner ring test rig response\relax }}{77}{figure.caption.64}}
\newlabel{fig:inner-ring-response-test}{{3.18}{77}{Inner ring test rig response\relax }{figure.caption.64}{}}
\newlabel{eq:model-middle}{{3.114}{78}{Dynamic model verification}{equation.3.4.114}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Middle ring torque test rig\relax }}{78}{figure.caption.65}}
\newlabel{fig:torque-middle}{{3.19}{78}{Middle ring torque test rig\relax }{figure.caption.65}{}}
\newlabel{fig:tau-alpha}{{3.20a}{79}{Test rig results for $\hat {\Gamma }_\alpha $\relax }{figure.caption.66}{}}
\newlabel{sub@fig:tau-alpha}{{a}{79}{Test rig results for $\hat {\Gamma }_\alpha $\relax }{figure.caption.66}{}}
\newlabel{fig:tau-alpha-r}{{3.20b}{79}{Errors for $\sqrt {R^2_{\alpha }}$\relax }{figure.caption.66}{}}
\newlabel{sub@fig:tau-alpha-r}{{b}{79}{Errors for $\sqrt {R^2_{\alpha }}$\relax }{figure.caption.66}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Middle ring response\relax }}{79}{figure.caption.66}}
\newlabel{fig:middle-response-test}{{3.20}{79}{Middle ring response\relax }{figure.caption.66}{}}
\newlabel{fig:tau-alpha-lam}{{3.21a}{79}{Test rig results for $\hat {\Gamma }_\alpha $ with $\Delta \alpha =\Delta \lambda $\relax }{figure.caption.67}{}}
\newlabel{sub@fig:tau-alpha-lam}{{a}{79}{Test rig results for $\hat {\Gamma }_\alpha $ with $\Delta \alpha =\Delta \lambda $\relax }{figure.caption.67}{}}
\newlabel{fig:tau-alpha-lam-r}{{3.21b}{79}{Errors for $\sqrt {R^2_{\alpha }}$\relax }{figure.caption.67}{}}
\newlabel{sub@fig:tau-alpha-lam-r}{{b}{79}{Errors for $\sqrt {R^2_{\alpha }}$\relax }{figure.caption.67}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Combined middle ring response\relax }}{79}{figure.caption.67}}
\newlabel{fig:tau-alpha-lam-response-test}{{3.21}{79}{Combined middle ring response\relax }{figure.caption.67}{}}
\citation{physicallybased,multibodydynamics}
\@writefile{toc}{\contentsline {subsubsection}{Body Response Simulation Tests}{80}{figure.caption.67}}
\newlabel{subsubsec:dynamicsimulation}{{3.4.2}{80}{Body Response Simulation Tests}{figure.caption.67}{}}
\newlabel{eq:basic-hover}{{3.117}{80}{Body Response Simulation Tests}{equation.3.4.117}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Upward lift test\relax }}{80}{figure.caption.68}}
\newlabel{fig:upward_accl}{{3.22}{80}{Upward lift test\relax }{figure.caption.68}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Differential torque input\relax }}{81}{figure.caption.69}}
\newlabel{fig:differential_prop}{{3.23}{81}{Differential torque input\relax }{figure.caption.69}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Quaternion from yaw torque\relax }}{81}{figure.caption.70}}
\newlabel{fig:spin}{{3.24}{81}{Quaternion from yaw torque\relax }{figure.caption.70}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Position descent from yaw spin\relax }}{82}{figure.caption.71}}
\newlabel{fig:spin_position}{{3.25}{82}{Position descent from yaw spin\relax }{figure.caption.71}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}Consolidated Model}{82}{section.3.5}}
\newlabel{sec:dynamics.model}{{3.5}{82}{Consolidated Model}{section.3.5}{}}
\newlabel{eq:quaternion-states}{{3.118}{82}{Consolidated Model}{equation.3.5.118}{}}
\newlabel{eq:quaternion-states-velocity}{{3.118a}{82}{Consolidated Model}{equation.3.5.1}{}}
\newlabel{eq:quaternion-states-acceleration}{{3.118b}{82}{Consolidated Model}{equation.3.5.2}{}}
\newlabel{eq:quaternion-states-quaternion}{{3.118c}{82}{Consolidated Model}{equation.3.5.3}{}}
\newlabel{eq:quaternion-states-angular}{{3.118d}{82}{Consolidated Model}{equation.3.5.4}{}}
\newlabel{eq:quaternion-inputs}{{3.119}{83}{Consolidated Model}{equation.3.5.119}{}}
\newlabel{eq:consolidated-h-torque}{{3.120}{83}{Consolidated Model}{equation.3.5.120}{}}
\newlabel{eq:dynamic-plant-inputs}{{3.121}{83}{Consolidated Model}{equation.3.5.121}{}}
\newlabel{eq:aerodynamic-thrust}{{3.121a}{83}{Consolidated Model}{equation.3.5.1}{}}
\newlabel{eq:aerodynamic-torque}{{3.121b}{83}{Consolidated Model}{equation.3.5.2}{}}
\newlabel{eq:actuator-torque}{{3.122}{83}{Consolidated Model}{equation.3.5.122}{}}
\newlabel{eq:consolidated-grav-torque}{{3.123}{83}{Consolidated Model}{equation.3.5.123}{}}
\@setckpt{ch3}{
\setcounter{page}{84}
\setcounter{equation}{124}
\setcounter{enumi}{2}
\setcounter{enumii}{4}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{3}
\setcounter{section}{5}
\setcounter{subsection}{0}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{25}
\setcounter{table}{0}
\setcounter{r@tfl@t}{0}
\setcounter{Item}{6}
\setcounter{Hfootnote}{0}
\setcounter{bookmark@seq@number}{38}
\setcounter{vrcnt}{0}
\setcounter{FancyVerbLine}{0}
\setcounter{float@type}{4}
\setcounter{mdf@globalstyle@cnt}{0}
\setcounter{mdfcountframes}{0}
\setcounter{mdf@env@i}{0}
\setcounter{mdf@env@ii}{0}
\setcounter{mdf@zref@counter}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{subfigure}{0}
\setcounter{subtable}{0}
\setcounter{tikztiming@nrows}{0}
\setcounter{tikztimingrows}{0}
\setcounter{tikztimingtrans}{0}
\setcounter{tikztimingtranspos}{0}
\setcounter{parentequation}{121}
\setcounter{theorem}{0}
\setcounter{corollary}{0}
\setcounter{axiom}{0}
\setcounter{section@level}{0}
}