-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
539 lines (467 loc) · 24.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# Train asymmetry extraction network D and segmentation network F
import argparse
import torch
from torch.utils import data
import torch.nn as nn
import numpy as np
import torch.optim as optim
import torch.backends.cudnn as cudnn
import os
import os.path as osp
from dataset import StrokeTrain3D
from model.unet3d.unet_model import ResidualUNet3D
from model.unet3d.losses import GeneralizedDiceLoss
from model.transform_net import PlaneFinder
import timeit
import math
from PIL import Image
import sys
from misc import Logger, map2fig
import torchvision.transforms as transforms
start = timeit.default_timer()
INPUT_SIZE = [256, 256]
BATCH_SIZE = 6
NUM_SLICES = 40
NUM_EXAMPLES = 1000 # not real ct number in dataset because randomly choose CT per step
MAX_EPOCH = 100
USE_REG_EPOCH = 2 # increase this number to extend the warm-start epochs
GPU = "2, 3, 4, 5, 6, 7"
root_dir = "/data/StrokeCT/adn"
pos_weight = 1.0
gamma = 64./255
assert pos_weight == 1.0
useless_label = [4]
postfix = "-adn-wl%.1f" % (pos_weight) # using dropout, sym rotation, gray-white matter
data_dir = "/data/StrokeCT/AISD_data_resample"
train_txt = "/data/StrokeCT/aisd_train.txt"
class_weight = np.array([1.0, pos_weight])
LEARNING_RATE = 1e-4
SEG_REC_RATE = 1
NUM_CLASSES = 2
POWER = 0.9
RANDOM_SEED = 1234
SEG_RESTORE_FROM = ""
ASYM_RESTORE_FROM = ""
# require pretrained gray-white matter and CSF segmentation model here
# we actually use SPM results to train a resunet3D segmentation model to ease the coding
GWM_SEG_RESTORE_FROM = "B0010_S003500.pth"
# require pretrained transformation network
ALIGN_RESTORE_FROM = "B0040_S012500.pth"
SEG_ASYM_RESTORE_FROM = ""
SNAPSHOT_DIR = osp.join(root_dir, 'snapshots'+postfix)
IMGSHOT_DIR = osp.join(root_dir, 'imgshots'+postfix)
WEIGHT_DECAY = 5e-4
LAMBDA_SEG = 1
LAMBDA_REG_1 = 10
LAMBDA_REG_2 = 10
NUM_EXAMPLES_PER_EPOCH = NUM_EXAMPLES
NUM_STEPS_PER_EPOCH = math.ceil(NUM_EXAMPLES_PER_EPOCH / float(BATCH_SIZE))
NUM_STEPS_USE_REG = NUM_STEPS_PER_EPOCH * USE_REG_EPOCH
MAX_ITER = max(NUM_EXAMPLES_PER_EPOCH * MAX_EPOCH + 1,
NUM_STEPS_PER_EPOCH * BATCH_SIZE * MAX_EPOCH + 1)
SAVE_PRED_EVERY = NUM_STEPS_PER_EPOCH * 5
os.makedirs(SNAPSHOT_DIR, exist_ok=True)
os.makedirs(IMGSHOT_DIR, exist_ok=True)
LOG_PATH = SNAPSHOT_DIR + "/B"+format(BATCH_SIZE, "04d")+"E"+format(MAX_EPOCH, "04d")+".log"
sys.stdout = Logger(LOG_PATH, sys.stdout)
print("use dropout, probability is 0.2.")
print("useless label:", useless_label)
print("lr:", LEARNING_RATE)
print("gamma:", gamma)
print(postfix)
print(data_dir)
print("SEG, REG_1, REG_2:", LAMBDA_SEG, LAMBDA_REG_1, LAMBDA_REG_2)
print("num step to use regularization loss:", NUM_STEPS_USE_REG)
print("seg reduce rate:", SEG_REC_RATE)
print("save pred every:", SAVE_PRED_EVERY)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="UNet Network")
parser.add_argument("--set-start", default=False)
parser.add_argument("--start-step", default=0, type=int)
parser.add_argument("--is-training", default=True,
help="Whether to freeze BN layers, False for Freezing")
parser.add_argument("--img-dir", type=str, default=IMGSHOT_DIR,
help="Where to save images of the model.")
parser.add_argument("--num-workers", default=16)
parser.add_argument("--final-step", type=int, default=int(NUM_STEPS_PER_EPOCH * MAX_EPOCH),
help="Number of training steps.")
parser.add_argument("--fine-tune", default=False)
parser.add_argument("--gpu", default=GPU,
help="choose gpu device.")
parser.add_argument('--print-freq', '-p', default=5, type=int,
metavar='N', help='print frequency')
parser.add_argument('--save-img-freq', default=100, type=int,
metavar='N', help='save image frequency')
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--data-dir", type=str, default=data_dir,
help="Path to the text file listing the images in the dataset.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", default=True,
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-jitter", default=True)
parser.add_argument("--random-rotate", default=True)
parser.add_argument("--skin-aug", default="-sa" in postfix)
parser.add_argument("--inf", default="inf" in postfix)
parser.add_argument("--random-scale", default="-sc" in postfix,
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--seg-restore-from", type=str, default=SEG_RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--align-restore-from", type=str, default=ALIGN_RESTORE_FROM)
parser.add_argument("--gwm-seg-restore-from", type=str, default=GWM_SEG_RESTORE_FROM)
parser.add_argument("--seg-asym-restore-from", type=str, default=SEG_ASYM_RESTORE_FROM)
parser.add_argument("--asym-restore-from", type=str, default=ASYM_RESTORE_FROM)
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
return parser.parse_args()
args = get_arguments()
def loss_calc(pred, label):
"""
This function returns cross entropy loss for semantic segmentation
"""
label = label.cuda()
BCELoss = nn.BCELoss()
DiceLoss = GeneralizedDiceLoss(normalization="none")
return BCELoss(pred, label), DiceLoss(pred.unsqueeze(dim=1), label.unsqueeze(dim=1))
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, actual_step):
"""Original Author: Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
lr = lr_poly(args.learning_rate, actual_step * args.batch_size, MAX_ITER, args.power)
optimizer.param_groups[0]['lr'] = lr
optimizer.param_groups[1]['lr'] = lr*SEG_REC_RATE
def _voxel_accuracy(pred, target):
accuracy_sum = 0.0
for i in range(0, pred.shape[0]):
out = pred[i] > 0.5
accuracy = np.sum(out == target[i], dtype=np.float32) / out.size
accuracy_sum += accuracy
return accuracy_sum / pred.shape[0]
# change to ct dice
def _ct_accuracy(pred, target):
dice_sum = 0.0
for i in range(0, pred.shape[0]):
out = pred[i] > 0.5
overlap = np.sum(np.logical_and(out, target[i]))
union = np.sum(out) + np.sum(target[i])
if union:
dice = 2*overlap/union
else:
dice = 1.0
dice_sum += dice
return dice_sum / pred.shape[0]
def main():
"""Create the model and start the training."""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.enabled = True
torch.manual_seed(args.random_seed)
# tissue segmentation model
gwm_seg_model = ResidualUNet3D(in_channels=1, out_channels=5, f_maps=32, final_sigmoid=False,
use_transconv=False, use_dp=True, p=0.2, use_activation=False)
gwm_seg_model = nn.DataParallel(gwm_seg_model)
# alignment model
align_model = PlaneFinder(is_train=False)
# asymmetry separation network
asym_model = ResidualUNet3D(in_channels=1, out_channels=1, f_maps=32, use_transconv=False, use_dp=True, p=0.2)
# segmentation model
seg_model = ResidualUNet3D(in_channels=1, out_channels=1, f_maps=32, use_transconv=False, use_dp=True, p=0.2)
seg_model = nn.DataParallel(seg_model)
asym_model = nn.DataParallel(asym_model)
optimizer = optim.AdamW([{'params': asym_model.parameters(), 'lr': args.learning_rate},
{'params': seg_model.parameters(), 'lr': args.learning_rate*SEG_REC_RATE}],
weight_decay=args.weight_decay,
betas=(0.9, 0.999))
if args.seg_restore_from:
if os.path.isfile(args.seg_restore_from):
print("=> loading checkpoint '{}'".format(args.seg_restore_from))
checkpoint = torch.load(args.seg_restore_from)
if args.set_start:
args.start_step = int(math.ceil(checkpoint['example'] / args.batch_size))
seg_model.load_state_dict(checkpoint['seg_state_dict'])
print("=> loaded checkpoint '{}' (step {})"
.format(args.seg_restore_from, args.start_step))
else:
print("=> no checkpoint found at '{}'".format(args.seg_restore_from))
exit(-1)
if args.align_restore_from:
if os.path.isfile(args.align_restore_from):
print("=> loading checkpoint '{}'".format(args.align_restore_from))
checkpoint = torch.load(args.align_restore_from)
align_model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (step {})"
.format(args.align_restore_from, args.start_step))
else:
print("=> no checkpoint found at '{}'".format(args.align_restore_from))
exit(-1)
if args.gwm_seg_restore_from:
if os.path.isfile(args.gwm_seg_restore_from):
print("=> loading checkpoint '{}'".format(args.gwm_seg_restore_from))
checkpoint = torch.load(args.gwm_seg_restore_from)
gwm_seg_model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (step {})"
.format(args.gwm_seg_restore_from, args.start_step))
else:
print("=> no checkpoint found at '{}'".format(args.gwm_seg_restore_from))
exit(-1)
if args.asym_restore_from:
if os.path.isfile(args.asym_restore_from):
print("=> loading checkpoint '{}'".format(args.asym_restore_from))
checkpoint = torch.load(args.asym_restore_from)
for name, _ in checkpoint['asym_state_dict'].items():
try:
asym_model.state_dict()[name].copy_(checkpoint['asym_state_dict'][name])
except:
print(name)
print("=> loaded checkpoint '{}' (step {})"
.format(args.asym_restore_from, args.start_step))
else:
print("=> no checkpoint found at '{}'".format(args.asym_restore_from))
exit(-1)
if args.seg_asym_restore_from:
if os.path.isfile(args.seg_asym_restore_from):
print("=> loading checkpoint '{}'".format(args.seg_asym_restore_from))
checkpoint = torch.load(args.seg_asym_restore_from)
if args.set_start:
args.start_step = int(math.ceil(checkpoint['example'] / args.batch_size))
seg_model.load_state_dict(checkpoint["seg_state_dict"])
asym_model.load_state_dict(checkpoint["asym_state_dict"])
print("=> loaded checkpoint '{}' (step {})"
.format(args.seg_asym_restore_from, args.start_step))
else:
print("=> no checkpoint found at '{}'".format(args.seg_asym_restore_from))
exit(-1)
align_model = nn.DataParallel(align_model)
align_model.eval()
align_model.cuda()
gwm_seg_model.eval()
gwm_seg_model.cuda()
seg_model.train()
seg_model.cuda()
asym_model.train()
asym_model.cuda()
cudnn.benchmark = True
trainloader = data.DataLoader(StrokeTrain3D(data_dir=data_dir, train_txt=train_txt,
num_ct=NUM_EXAMPLES, gamma=gamma,
is_mirror=args.random_mirror,
is_jitter=args.random_jitter,
is_rotate=args.random_rotate),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
seg_losses = AverageMeter()
reg_losses = AverageMeter()
accuracy = AverageMeter()
ct_accuracy = AverageMeter()
print("class weight:", class_weight)
cnt = 0
actual_step = args.start_step
while actual_step < args.final_step:
iter_end = timeit.default_timer()
for i_iter, batch in enumerate(trainloader):
actual_step = int(args.start_step + cnt)
data_time.update(timeit.default_timer() - iter_end)
images, labels, patch_name = batch
images = images.cuda()
labels = labels.cuda()
with torch.no_grad():
images_t, images_r, images_t_f, _, M, M_inv = align_model(images)
diff_t = images_t - images_t_f
sym_comp_t = torch.zeros_like(images_t)
sym_comp_t[diff_t > 0] = images_t[diff_t > 0]
sym_comp_t[diff_t == 0] = images_t[diff_t == 0]
sym_comp_t[diff_t < 0] = images_t_f[diff_t < 0]
asym_map_t = nn.ReLU()(images_t_f - images_t)
# infer gray-white matter
gwm_logits_t = gwm_seg_model(images_t)
gwm_msks_t = gwm_logits_t.argmax(dim=1)
gm_msks_t = (gwm_msks_t == 1).type(torch.float32)
gm_msks_t = gm_msks_t.unsqueeze(dim=1)
gm_msks_t_f = transforms.functional.hflip(gm_msks_t)
wm_msks_t = (gwm_msks_t == 2).type(torch.float32)
wm_msks_t = wm_msks_t.unsqueeze(dim=1)
gw_diff_t = torch.logical_and(gm_msks_t_f, wm_msks_t)
# infer csf
csf_msks_t = (gwm_msks_t == 3).type(torch.float32)
csf_msks_t = csf_msks_t.unsqueeze(dim=1)
labels_t = stn(labels.unsqueeze(dim=1), M[:, :3, :]).squeeze(dim=1)
# deal with special value 4
useless_area_t = torch.zeros_like(labels_t, dtype=torch.bool)
for ll in useless_label:
useless_area_t = useless_area_t + labels_t == ll
labels_t[useless_area_t] = 0
# consider value 1, 2, 3, 5 as infarct areas
infarct_area_t = labels_t != 0
labels_t[infarct_area_t] = 1
# make gw_diff_t doesn't include stroke areas, i.e., all normal areas
gw_diff_t = gw_diff_t * (labels_t == 0).unsqueeze(dim=1)
csf_msks_t = csf_msks_t * (labels_t == 0).unsqueeze(dim=1)
optimizer.zero_grad()
adjust_learning_rate(optimizer, actual_step)
# separate asym to be anatomical asym and other asym
subject_asym_conf_t = asym_model(images_t)
anatomy_asym_conf_t = asym_map_t - subject_asym_conf_t
anatomy_asym_conf_t = nn.ReLU()(anatomy_asym_conf_t)
subject_asym_images_t = images_t + anatomy_asym_conf_t
pred_t = seg_model(subject_asym_images_t)
pred_t = pred_t.squeeze(dim=1)
bce_loss, dice_loss = loss_calc(pred_t, labels_t)
seg_loss = bce_loss + dice_loss
anatomy_asym_images_t = images_t + subject_asym_conf_t
anatomy_asym_images_t = torch.clamp(anatomy_asym_images_t, max=sym_comp_t)
if actual_step < NUM_STEPS_USE_REG:
reg_bce_loss, reg_dice_loss = loss_calc(subject_asym_conf_t.squeeze(dim=1), labels_t)
reg_loss = reg_bce_loss + reg_dice_loss
LAMBDA_REG = LAMBDA_REG_1
else:
# 1. the size of subject asym should be the same as the size of stroke
# 2. subject asym should from subject + anatomy
# 3. anatomical asym should as large as possible
# 4. subject asym should avoid gray-white matter difference
# 5. subject asym should avoid csf
subject_asym_msk_t = labels_t.unsqueeze(dim=1) == 1
subject_asym_gt_t = asym_map_t * subject_asym_msk_t
reg_loss1 = nn.L1Loss()(subject_asym_conf_t.mean(), subject_asym_gt_t.mean())
sym_map_mask_t = asym_map_t == 0
reg_loss2 = nn.L1Loss()(subject_asym_conf_t*sym_map_mask_t, torch.zeros_like(subject_asym_conf_t))
reg_loss3 = -anatomy_asym_conf_t.mean()
reg_loss4 = nn.L1Loss()(subject_asym_conf_t*gw_diff_t, torch.zeros_like(subject_asym_conf_t))
reg_loss5 = nn.L1Loss()(subject_asym_conf_t*csf_msks_t, torch.zeros_like(subject_asym_conf_t))
reg_loss = reg_loss1 + reg_loss2 + reg_loss3 + reg_loss4 + reg_loss5
LAMBDA_REG = LAMBDA_REG_2
loss = LAMBDA_SEG * seg_loss + LAMBDA_REG * reg_loss
losses.update(loss.item(), pred_t.size(0))
seg_losses.update(seg_loss.item(), pred_t.size(0))
reg_losses.update(reg_loss.item(), pred_t.size(0))
acc = _voxel_accuracy(pred_t.data.cpu().numpy(), labels_t.data.cpu().numpy())
ct_acc = _ct_accuracy(pred_t.data.cpu().numpy(), labels_t.data.cpu().numpy())
accuracy.update(acc, pred_t.size(0))
ct_accuracy.update(ct_acc, pred_t.size(0))
loss.backward()
optimizer.step()
batch_time.update(timeit.default_timer() - iter_end)
iter_end = timeit.default_timer()
if actual_step % args.print_freq == 0:
print('iter: [{0}]{1}/{2}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Seg {seg_loss.val:.4f} ({seg_loss.avg:.4f})\t'
'Reg {reg_loss.val:.4f} ({reg_loss.avg:.4f})\n'
'Pixel Accuracy {accuracy.val:.3f} ({accuracy.avg:.3f})\t'
'CT Dice {ct_accuracy.val:.3f} ({ct_accuracy.avg:.3f})\t'
'Asym {asym:.4f}'.format(
cnt, actual_step, args.final_step, batch_time=batch_time,
data_time=data_time, loss=losses, seg_loss=seg_losses,
reg_loss=reg_losses,
accuracy=accuracy, ct_accuracy=ct_accuracy, asym=subject_asym_conf_t.mean().item()))
if actual_step % args.save_img_freq == 0:
image_t = images_t.data.cpu().numpy()[0, 0, NUM_SLICES//2, :, :]
image_sym_t = sym_comp_t.data.cpu().numpy()[0, 0, NUM_SLICES//2, :, :]
msk_size = pred_t.size(-1)
image_t = 255 * image_t
image_sym_t = 255 * image_sym_t
label_t = labels_t.data.cpu().numpy()[0, NUM_SLICES//2, :, :]
label_t = 255 * (label_t != 0)
single_pred_t = pred_t.data.cpu().numpy()[0, NUM_SLICES//2, :, :]
single_pred_t = 255 * (single_pred_t > 0.5)
# mix image with label
cur_img_show = np.array(image_t, dtype=np.uint8)
cur_img_show = np.repeat(np.expand_dims(cur_img_show, axis=2), 3, axis=2)
cur_lbl_show = np.zeros((msk_size, msk_size, 3))
cur_lbl_show[:, :, 0] = label_t
cur_img_with_lbl = 0.7*np.array(cur_img_show, dtype=np.float32) + 0.3*np.array(cur_lbl_show, dtype=np.float32)
cur_msk = np.repeat(np.expand_dims(label_t == 0, axis=2), 3, axis=2)
cur_img_with_lbl[cur_msk] = cur_img_show[cur_msk]
cur_img_with_lbl = np.array(cur_img_with_lbl, dtype=np.uint8)
# mix image with pred
cur_pred_show = np.zeros((msk_size, msk_size, 3))
cur_pred_show[:, :, 0] = single_pred_t
cur_img_with_pred = 0.7*np.array(cur_img_show, dtype=np.float32) + 0.3*np.array(cur_pred_show, dtype=np.float32)
cur_pred_msk = np.repeat(np.expand_dims(single_pred_t == 0, axis=2), 3, axis=2)
cur_img_with_pred[cur_pred_msk] = cur_img_show[cur_pred_msk]
cur_img_with_pred = np.array(cur_img_with_pred, dtype=np.uint8)
subject_asym_image = subject_asym_images_t.data.cpu().numpy()[0, 0, NUM_SLICES//2, :, :]
subject_asym_image = 255.0 * subject_asym_image
anatomy_asym_image = anatomy_asym_images_t.data.cpu().numpy()[0, 0, NUM_SLICES//2, :, :]
anatomy_asym_image = 255.0 * anatomy_asym_image
cur_subject_asym_conf = subject_asym_conf_t[0, 0, NUM_SLICES//2, :, :].squeeze().data.cpu().numpy()
cur_subject_asym_conf = map2fig(cur_subject_asym_conf)
cur_subject_asym_conf = np.array(cur_subject_asym_conf, dtype=np.uint8)
cur_anatomy_asym_conf = anatomy_asym_conf_t[0, 0, NUM_SLICES//2, :, :].squeeze().data.cpu().numpy()
cur_anatomy_asym_conf = map2fig(cur_anatomy_asym_conf)
cur_anatomy_asym_conf = np.array(cur_anatomy_asym_conf, dtype=np.uint8)
new_im = Image.new('RGB', (msk_size * 3, msk_size * 3))
new_im.paste(Image.fromarray(image_t.astype('uint8'), 'L'), (0, 0))
new_im.paste(Image.fromarray(cur_img_with_pred.astype('uint8'), 'RGB'), (msk_size, 0))
new_im.paste(Image.fromarray(cur_img_with_lbl.astype('uint8'), 'RGB'), (msk_size * 2, 0))
new_im.paste(Image.fromarray(subject_asym_image.astype('uint8'), 'L'), (0, msk_size))
new_im.paste(Image.fromarray(anatomy_asym_image.astype('uint8'), 'L'), (msk_size, msk_size))
new_im.paste(Image.fromarray(image_sym_t.astype('uint8'), 'L'), (msk_size * 2, msk_size))
new_im.paste(Image.fromarray(cur_subject_asym_conf.astype('uint8'), 'RGB'), (0, msk_size * 2))
new_im.paste(Image.fromarray(cur_anatomy_asym_conf.astype('uint8'), "RGB"), (msk_size, msk_size * 2))
new_im_name = 'B' + format(args.batch_size, "04d") + '_S' + format(actual_step, "06d") + '_' + patch_name[0] + ".jpg"
new_im_file = os.path.join(args.img_dir, new_im_name)
new_im.save(new_im_file)
if actual_step % args.save_pred_every == 0 and cnt != 0:
print('taking snapshot ...')
torch.save({'example': actual_step * args.batch_size,
'seg_state_dict': seg_model.state_dict(),
'asym_state_dict': asym_model.state_dict()},
osp.join(args.snapshot_dir,
'B' + format(args.batch_size, "04d") + '_S' + format(actual_step, "06d") + '.pth'))
if actual_step >= args.final_step:
break
cnt += 1
print('save the final model ...')
torch.save({'example': actual_step * args.batch_size,
'seg_state_dict': seg_model.state_dict(),
'asym_state_dict': asym_model.state_dict()},
osp.join(args.snapshot_dir, 'B' + format(args.batch_size, "04d") + '_S' + format(actual_step, "06d") + '.pth'))
end = timeit.default_timer()
print(end - start, 'seconds')
def bpDice(pd, gt, label):
bp_pd = pd == label
bp_gt = gt == label
overlap = np.sum(np.logical_and(bp_pd, bp_gt))
union = np.sum(bp_pd) + np.sum(bp_gt)
if union:
return 2*overlap/union
else:
return 1.0
def stn(x, theta):
# theta must be (Bs, 3, 4) = [R|t]
grid = nn.functional.affine_grid(theta, x.size(), align_corners=False)
out = nn.functional.grid_sample(x, grid, padding_mode='zeros', align_corners=False)
return out
if __name__ == "__main__":
main()