forked from smallelephant9516/HLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEMdata.py
317 lines (287 loc) · 11.3 KB
/
EMdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
import os
import sys
import time
import pandas as pd
import gemmi
start_time= time.time()
class read_data_df():
def __init__(self,file):
self.file = file
def star2dataframe(self):
starFile=self.file
from gemmi import cif
star = cif.read_file(starFile)
if len(star) == 2:
optics = cif.Document()
optics.add_copied_block(star[0])
del star[0]
js = optics.as_json(True) # True -> preserve case
optics = pd.read_json(js).T
d = {c.strip('_'): optics[c].values[0] for c in optics}
optics = pd.DataFrame(d)
else:
optics = None
js = star.as_json(True) # True -> preserve case
data = pd.read_json(js).T
d = {c.strip('_'): data[c].values[0] for c in data}
data = pd.DataFrame(d)
assert("rlnImageName" in data)
tmp = data["rlnImageName"].str.split("@", expand=True)
indices, filenames = tmp.iloc[:,0], tmp.iloc[:, -1]
indices = indices.astype(int)-1
data["pid"] = indices
data["filename"] = filenames
if optics is not None:
og_names = set(optics["rlnOpticsGroup"].unique())
for gn, g in data.groupby("rlnOpticsGroup", sort=False):
if gn not in og_names:
print(f"ERROR: optic group {gn} not available ({sorted(og_names)})")
sys.exit(-1)
ptcl_indices = g.index
og_index = optics["rlnOpticsGroup"] == gn
if "rlnPixelSize" in optics:
data.loc[ptcl_indices, "apix"] = optics.loc[og_index, "rlnPixelSize"].astype(float).iloc[0]
if "rlnPixelSize" in data:
data.loc[:, "apix"] = data["rlnPixelSize"]
if "rlnClassNumber" in data:
data.loc[:, "class"] = data["rlnClassNumber"]
if "rlnHelicalTubeID" in data:
data.loc[:, "helicaltube"] = data["rlnHelicalTubeID"].astype(int)-1
if "rlnAnglePsiPrior" in data:
data.loc[:, "phi0"] = data["rlnAnglePsiPrior"].astype(float).round(3) - 90.0
return data
class read_relion():
def __init__(self, file):
self.file = file
def getRdata(self):
Rvar = [] # read the variables metadata
Rdata = [] # read the data
for star_line in open(self.file).readlines():
if star_line.find("_rln") != -1:
var = star_line.split()
Rvar.append(var[0])
# Rvar_len = Rvar_len+1
elif star_line.find("data_") != -1 or star_line.find("loop_") != -1 or len(star_line.strip()) == 0:
continue
else:
Rdata.append(star_line.split())
return Rvar, Rdata
def extractoptic(self):
optics=[]
for star_line in open(self.file).readlines()[0:19]:
optics.append(star_line.split())
return optics
def getRdata_31(self):
Rvar = [] # read the variables metadata
Rdata = [] # read the data
for star_line in open(self.file).readlines()[20:]:
if star_line.find("_rln") != -1:
var = star_line.split()
Rvar.append(var[0])
# Rvar_len = Rvar_len+1
elif star_line.find("data_") != -1 or star_line.find("loop_") != -1 or len(star_line.strip()) == 0:
continue
else:
Rdata.append(star_line.split())
return Rvar, Rdata
class process_helical_df():
def __init__(self,dataframe):
self.df=dataframe
def extract_helical_select(self):
dataframe=self.df
filament_data=dataframe.groupby(['filename','helicaltube'])
filament_index=list(filament_data.groups.keys())
helicaldic={}
helicalnum = []
dtype=[('class2D',int),('place',int),('index',int)]
for i in range(len(filament_index)):
name='-'.join(map(str, filament_index[i]))
helicaldic[name]=[]
helicalnum=helicalnum+[name]
print('The filament number are: ',len(helicalnum))
print('The number of particles are:',len(dataframe))
for i in range(len(dataframe)):
particle=dataframe.iloc[i]
ID=str(particle['filename']) + '-' + str(particle['helicaltube'])
helicaldic[ID]=helicaldic[ID]+[(particle['class'],particle['rlnImageName'][0:6],i)]
if i%100000==0:
end_time=time.time()
passed_time=(end_time-start_time)/60
print(i,'%s mins' % passed_time)
for i in range(len(helicalnum)):
lst=np.array(helicaldic[helicalnum[i]],dtype=dtype)
helicaldic[helicalnum[i]]=np.sort(lst,order='place')
print('finish converting')
for i in range(10):
print(helicaldic[helicalnum[i]])
return helicaldic, filament_index
#the data is read_relion(sys.argv[1]).getRdata()
class process_helical():
def __init__(self, dataset, classnumber=50):
self.metadata=dataset[0]
self.data=dataset[1]
self.classnumber=classnumber
def extarct_helical(self,label=None):
data=self.data
M = self.metadata.index('_rlnImageName')
H = self.metadata.index('_rlnHelicalTubeID')
if label is None:
C = self.metadata.index('_rlnClassNumber')
print('finish reading')
# extract helical parameters
helicaldic = {}
helicalnum = []
count = -1
label_id=0
for particle in data:
ID = particle[M][7:] + '-' + str(particle[H])
if ID in helicalnum:
n = str(count)
lst = helicaldic[n]
if label is not None:
lst.append(label[label_id])
label_id +=1
else:
lst.append(particle[C])
helicaldic[n] = lst
else:
helicalnum.append(ID)
n = str(helicalnum.index(ID))
count += 1
if label is not None:
helicaldic[n]=[label[label_id]]
label_id +=1
else:
helicaldic[n] = [particle[C]]
print('finish converting')
for i in range(10):
print(helicaldic[str(i)])
return helicaldic, helicalnum
def extarct_helical_select(self):
data=self.data
M = self.metadata.index('_rlnImageName')
H = self.metadata.index('_rlnHelicalTubeID')
C = self.metadata.index('_rlnClassNumber')
print('finish reading')
# extract helical parameters
helicaldic = {}
helicalnum = []
count = -1
dtype=[('class2D',int),('place',int),('index',int)]
print('number of particles',len(data))
for i, particle in enumerate(data):
if i%100000==0:
end_time=time.time()
passed_time=(end_time-start_time)/60
print(i,'%s mins' % passed_time)
ID = particle[M][7:] + '-' + str(particle[H])
if ID in helicalnum:
n = str(helicalnum.index(ID))
helicaldic[n]=helicaldic[n]+[(particle[C],particle[M][0:6],i)]
else:
helicalnum=helicalnum+[ID]
n = str(helicalnum.index(ID))
count += 1
helicaldic[n] = [(particle[C],particle[M][0:6],i)]
for i in range(len(helicaldic)):
lst=np.array(helicaldic[str(i)],dtype=dtype)
helicaldic[str(i)]=np.sort(lst,order='place')
print('finish converting')
#for i in range(5):
# print(helicaldic[str(i)])
return helicaldic, helicalnum
def extarct_helical_select_fast(self):
data=self.data
M = self.metadata.index('_rlnMicrographName')
H = self.metadata.index('_rlnHelicalTubeID')
C = self.metadata.index('_rlnClassNumber')
print('finish reading')
dataframe=pd.DataFrame(data=data,columns=self.metadata)
print('finish dataframe')
groupby_filament=dataframe.groupby(['_rlnMicrographName','_rlnHelicalTubeID'])
print(groupby_filament.count())
# extract helical parameters
print('finish converting')
#for i in range(5):
# print(helicaldic[str(i)])
return groupby_filament
class process_cryosparc_helical():
def __init__(self,data):
self.data=data
def extract_helical(self):
data=self.data
helicaldic = {}
helicalnum = []
count = -1
for particle in data:
ID = str(os.path.basename(particle[1]))
if ID in helicalnum:
n = str(count)
lst = helicaldic[n]
lst.append(particle[-2])
helicaldic[n] = lst
else:
helicalnum.append(ID)
n = str(helicalnum.index(ID))
count += 1
helicaldic[n] = [particle[-2]]
print('finish converting')
for i in range(10):
print(helicaldic[str(i)])
return helicaldic, helicalnum
class output_simple_helical():
def __init__(self, file, data):
self.data=process_helical(data).extarct_helical()
self.name=os.path.splitext(file)[0]
def export(self):
helicalnum=self.data[1]
helicaldic=self.data[0]
with open(self.name+".txt", "a") as f:
for i in range(len(helicalnum)):
lst = helicaldic[str(i)]
for j in range(len(lst)):
if j == len(lst) - 1:
f.write(lst[j] + '\n')
else:
f.write(lst[j] + ' ')
class output_star():
def __init__(self,file,cluster_n,data,metadata):
self.cluster_n=cluster_n
self.data=data
self.metadata=metadata
self.name=os.path.splitext(file)[0]+"_"+str(cluster_n)+".star"
def writemetadata(self):
filename = self.name
with open(filename, "a") as file:
file.writelines("%s\n" % " ")
file.writelines("%s\n" % "data_")
file.writelines("%s\n" % " ")
file.writelines("%s\n" % "loop_")
i=0
for item in self.metadata:
i+=1
# fullstr = ' '.join([str(elem) for elem in item ])
file.writelines("%s %s\n" % (item,'#{}'.format(i)))
def writecluster(self):
filename = self.name
with open(filename, "a") as file:
for item in self.data:
full_line=' '.join([str(elem) for elem in item])
file.writelines("%s\n" % full_line)
def opticgroup(self,optictitle):
filename = self.name
with open(filename,"w") as file:
for item in optictitle:
full_line = ' '.join([str(elem) for elem in item])
file.writelines("%s\n" % full_line)
with open(filename, "a") as file:
file.writelines("%s\n" % " ")
file.writelines("%s\n" % "data_particles")
file.writelines("%s\n" % " ")
file.writelines("%s\n" % "loop_")
i=0
for item in self.metadata:
i+=1
# fullstr = ' '.join([str(elem) for elem in item ])
file.writelines("%s %s\n" % (item,'#{}'.format(i)))