-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimilarity_ss.py
165 lines (125 loc) · 4.16 KB
/
similarity_ss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import json
import numpy as np
import copy
import collections
import hashlib
from bktree import BKTree
EPSILON = 0.0001
F = 128
MAX_DISTANCE = 32
def hashfunc(x):
return int(hashlib.md5(x).hexdigest(), 16)
def computeQuality(graph):
scores = [0]*graph["n"]
for edge in graph["edges"]:
for vertex in edge:
scores[vertex]+=1
return scores
def getNorm(a,b):
n = len(a)
diff = 0
for i in range(0,n):
diff += abs(b[i] - a[i])
return abs(diff)
def computeQualityPageRank(graph, scores):
l = graph['n']
scoresnp = np.zeros(l)
scoresnp = [float(scores[i])/sum(scores) for i in range(len(scores))]
pageRankMatrix = np.zeros((l,l))
for edge in graph["edges"]:
for i in range(len(edge)):
for j in range(i+1, len(edge)):
pageRankMatrix[edge[i]][edge[j]]+=1
pageRankMatrix[edge[j]][edge[i]]+=1
for i in range(len(pageRankMatrix)):
totalsum = sum(pageRankMatrix[i])
if totalsum !=0:
for j in range(len(pageRankMatrix)):
pageRankMatrix[i][j]= float(pageRankMatrix[i][j])/totalsum
scorestemp = np.zeros((l))
graphT = np.transpose(pageRankMatrix)
while True:
rtemp = np.zeros((l))
rtemp += np.matmul(graphT, scoresnp)
rnorm = sum(rtemp)
rtemp /= rnorm
# print(r)
# print(rtemp)
if getNorm(scoresnp,rtemp) < EPSILON:
break
scoresnp = copy.deepcopy(rtemp)
return rtemp
def computeQualityEdges(graph, quality, scores):
length = len(graph['edges'])
qualityEdges = [0]*length
for i in range(len(graph['edges'])):
for j in range(len(graph['edges'][i])):
qualityEdges[i]+= float(quality[graph['edges'][i][j]])/scores[graph['edges'][i][j]]
return qualityEdges
def computeScore(value1, value2):
x = (value1 ^ value2) & ((1 << F) - 1)
#Hamming distance = XOR 2 binary strings and calculate no. of set bits.
ans = 0
while x:
ans += 1
x &= x - 1
return 1 - float(ans)/F
def build_by_features(features):
v = [0] * F
masks = [1 << i for i in range(F)]
if isinstance(features, dict):
features = features.items()
for f in features:
assert isinstance(f, collections.Iterable)
h = hashfunc(f[0].encode('utf-8'))
w = f[1]
for i in range(F):
v[i] += w if h & masks[i] else -w
ans = 0
for i in range(F):
if v[i] > 0:
ans |= masks[i]
return ans
if __name__ == '__main__':
with open("data/generated_hypergraphs.json") as f:
graphs = json.load(f)
l = len(graphs)
quality = [[0]]*l
qualityEdges = [[0]]*l
for i in range(l):
scores = computeQuality(graphs[i])
quality[i] = computeQualityPageRank(graphs[i], scores)
qualityEdges[i] = computeQualityEdges(graphs[i], quality[i], scores)
features = [dict() for x in range(l)]
for i in range(l):
for j in range(len(scores)):
features[i]["v" + str(j)] = quality[i][j]
for i in range(l):
for j in range(len(graphs[i]['edges'])):
str1 = ""
for vertex in sorted(graphs[i]['edges'][j]):
str1+= "v" + str(vertex)
features[i][str1] = qualityEdges[i][j]
values = [build_by_features(features[i]) for i in range(l)]
valuesRevDict = {}
for i in range(len(values)):
if values[i] in valuesRevDict:
valuesRevDict[values[i]].append(i)
else:
valuesRevDict[values[i]] = [i]
tree = BKTree()
for value in values:
tree.add(value)
# for i in range(l):
# for j in range(i+1,l):
# score = computeScore(values[i], values[j])
# print str(graphs[i]["label"]) + " " + str(graphs[j]["label"]) + " " + str(score)
for i in range(l):
closest_pairs = tree.find(values[i],MAX_DISTANCE)
final_pairs = []
for pair in closest_pairs:
a,b = pair
a = 1 - float(a)/F
b = valuesRevDict[b]
final_pairs.append((a,b))
print str(i) + " " + str(final_pairs)