-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwsgi.py
131 lines (99 loc) · 5.04 KB
/
wsgi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import json
import flask
from flask import request
from spacy import Language
from werkzeug.exceptions import BadRequest
from NLPService.NLPUtils import NLPUtils
from NLPService.PipelineBuilder import PipelineBuilder
@Language.component('set_boundaries')
def set_boundaries(doc):
boundaries = ['\n', '.\n', '\n\n']
for token in doc[:-1]:
if token.text in boundaries:
doc[token.i + 1].is_sent_start = True
else:
doc[token.i + 1].is_sent_start = False
return doc
nlp_model = PipelineBuilder()
nlp = NLPUtils(nlp_model.get_model())
def create_app():
app = flask.Flask(__name__)
@app.route('/extract-features', methods=['POST'])
def get_features():
data = None
ignore_verbs = 'ignore-verbs' in request.json.keys()
received_dependencies = 'dependencies' in request.json.keys()
if 'text' not in request.json.keys():
return "Lacking textual data in proper tag.", 400
try:
data = request.get_json()
except BadRequest:
return "Input data has a formatting error.", 400
to_return = []
verbs_to_ignore = data['ignore-verbs'] if ignore_verbs else [
"love", "hate", "enjoy", "admire", "adore", "despise", "cherish", "regret",
"forgive", "fear", "crave", "miss", "appreciate", "expect", "hope", "wish",
"remember", "forget", "imagine", "understand", "believe", "doubt", "assume",
"realize", "care", "complain", "worry", "trust", "wonder", "surprise",
"amaze", "astonish", "fascinate", "impress", "bore", "annoy", "irritate",
"anger", "confuse", "disappoint", "excite", "inspire", "motivate", "amuse",
"entertain", "satisfy", "please", "frustrate", "overwhelm", "reassure",
"relax", "stress", "scare", "shock", "startle", "terrify", "oppose",
"encourage", "discourage", "criticize", "praise", "thank", "apologize"]
dependencies = data['dependencies'] if received_dependencies else ['dobj', 'advcl', 'appos', 'ROOT']
for text in data['text']:
if type(text) != dict or 'id' not in text.keys() or 'text' not in text.keys():
return "Formatting error.", 400
features = nlp.extract_features(text['text'], dependencies, verbs_to_ignore)
to_return.append({'id': text['id'], 'features': features})
return json.dumps(to_return, indent=4)
@app.route('/extract-features-aux', methods=['POST'])
def get_features_without_sentence_id():
data = None
ignore_verbs = 'ignore-verbs' in request.json.keys()
received_dependencies = 'dependencies' in request.json.keys()
if 'text' not in request.json.keys():
return "Lacking textual data in proper tag.", 400
try:
data = request.get_json()
except BadRequest:
return "Input data has a formatting error.", 400
try:
verbs_to_ignore = []
if 'ignore-verbs' in data:
verbs_to_ignore = data['ignore-verbs'] if ignore_verbs else []
dependencies = ['dobj', 'advcl', 'appos', 'ROOT']
if 'dependencies' in data:
dependencies = data['dependencies'] if received_dependencies else ['dobj', 'advcl', 'appos', 'ROOT']
if 'text' in data:
features = nlp.extract_features(data['text'], dependencies, verbs_to_ignore)
print(features)
return json.dumps(features, indent=4)
else:
return "Input data has a formatting error.", 400
except Exception as e:
return json.dumps([], indent=4)
@app.route('/review-extraction', methods=['POST'])
def process_reviews():
min_subj = request.json['minSubj'] if 'minSubj' in request.json.keys() else 0
max_subj = request.json['maxSubj'] if 'maxSubj' in request.json.keys() else 1
min_pol = request.json['minPol'] if 'minPol' in request.json.keys() else -1
max_pol = request.json['maxPol'] if 'maxPol' in request.json.keys() else 1
if 'text' not in request.json.keys():
return "Lacking textual data in proper tag.", 400
ignore_verbs = 'ignore-verbs' in request.json.keys()
received_dependencies = 'dependencies' in request.json.keys()
verbs_to_ignore = request.json['ignore-verbs'] if ignore_verbs else []
dependencies = request.json['dependencies'] if received_dependencies else ['dobj', 'advcl', 'appos', 'ROOT']
reviews = request.json['text']
to_return = []
for review in reviews:
pol, subj = nlp.analyze_sentiment(review['text'])
if min_pol <= pol <= max_pol and min_subj <= subj <= max_subj:
features = nlp.extract_features(review['text'], dependencies, verbs_to_ignore)
to_return.append({'id': review['id'], 'features': features})
return to_return
return app
if __name__ == "__main__":
flask_app = create_app()
flask_app.run(host='0.0.0.0', port='3004')