forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdomain.ml
277 lines (231 loc) · 8.26 KB
/
domain.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* KC Sivaramakrishnan, Indian Institute of Technology, Madras *)
(* Stephen Dolan, University of Cambridge *)
(* Tom Kelly, OCaml Labs Consultancy *)
(* *)
(* Copyright 2019 Indian Institute of Technology, Madras *)
(* Copyright 2014 University of Cambridge *)
(* Copyright 2021 OCaml Labs Consultancy Ltd *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
module Raw = struct
(* Low-level primitives provided by the runtime *)
type t = private int
external spawn : (unit -> unit) -> Mutex.t -> t
= "caml_domain_spawn"
external self : unit -> t
= "caml_ml_domain_id"
external cpu_relax : unit -> unit
= "caml_ml_domain_cpu_relax"
end
let cpu_relax () = Raw.cpu_relax ()
type id = Raw.t
type 'a state =
| Running
| Finished of ('a, exn) result
type 'a t = {
domain : Raw.t;
term_mutex: Mutex.t;
term_condition: Condition.t;
term_state: 'a state ref (* protected by [term_mutex] *)
}
module DLS = struct
type dls_state = Obj.t array
let unique_value = Obj.repr (ref 0)
external get_dls_state : unit -> dls_state = "%dls_get"
external set_dls_state : dls_state -> unit =
"caml_domain_dls_set" [@@noalloc]
let create_dls () =
let st = Array.make 8 unique_value in
set_dls_state st
let _ = create_dls ()
type 'a key = int * (unit -> 'a)
let key_counter = Atomic.make 0
type key_initializer =
KI: 'a key * ('a -> 'a) -> key_initializer
let parent_keys = Atomic.make ([] : key_initializer list)
let rec add_parent_key ki =
let l = Atomic.get parent_keys in
if not (Atomic.compare_and_set parent_keys l (ki :: l))
then add_parent_key ki
let new_key ?split_from_parent init_orphan =
let idx = Atomic.fetch_and_add key_counter 1 in
let k = (idx, init_orphan) in
begin match split_from_parent with
| None -> ()
| Some split -> add_parent_key (KI(k, split))
end;
k
(* If necessary, grow the current domain's local state array such that [idx]
* is a valid index in the array. *)
let maybe_grow idx =
let st = get_dls_state () in
let sz = Array.length st in
if idx < sz then st
else begin
let rec compute_new_size s =
if idx < s then s else compute_new_size (2 * s)
in
let new_sz = compute_new_size sz in
let new_st = Array.make new_sz unique_value in
Array.blit st 0 new_st 0 sz;
set_dls_state new_st;
new_st
end
let set (idx, _init) x =
let st = maybe_grow idx in
(* [Sys.opaque_identity] ensures that flambda does not look at the type of
* [x], which may be a [float] and conclude that the [st] is a float array.
* We do not want OCaml's float array optimisation kicking in here. *)
st.(idx) <- Obj.repr (Sys.opaque_identity x)
let get (idx, init) =
let st = maybe_grow idx in
let v = st.(idx) in
if v == unique_value then
let v' = Obj.repr (init ()) in
st.(idx) <- (Sys.opaque_identity v');
Obj.magic v'
else Obj.magic v
let get_initial_keys () : (int * Obj.t) list =
List.map
(fun (KI ((idx, _) as k, split)) ->
(idx, Obj.repr (split (get k))))
(Atomic.get parent_keys)
let set_initial_keys (l: (int * Obj.t) list) =
List.iter
(fun (idx, v) ->
let st = maybe_grow idx in st.(idx) <- v)
l
end
(******** Identity **********)
let get_id { domain; _ } = domain
let self () = Raw.self ()
let is_main_domain () = (self () :> int) = 0
(******** Callbacks **********)
(* first spawn, domain startup and at exit functionality *)
let first_domain_spawned = Atomic.make false
let first_spawn_function = ref (fun () -> ())
let before_first_spawn f =
if Atomic.get first_domain_spawned then
raise (Invalid_argument "First domain already spawned")
else begin
let old_f = !first_spawn_function in
let new_f () = old_f (); f () in
first_spawn_function := new_f
end
let do_before_first_spawn () =
if not (Atomic.get first_domain_spawned) then begin
Atomic.set first_domain_spawned true;
!first_spawn_function();
(* Release the old function *)
first_spawn_function := (fun () -> ())
end
let at_exit_key = DLS.new_key (fun () -> (fun () -> ()))
let at_exit f =
let old_exit : unit -> unit = DLS.get at_exit_key in
let new_exit () =
(* The domain termination callbacks ([at_exit]) are run in
last-in-first-out (LIFO) order in order to be symmetric with the domain
creation callbacks ([at_each_spawn]) which run in first-in-fisrt-out
(FIFO) order. *)
f (); old_exit ()
in
DLS.set at_exit_key new_exit
let do_at_exit () =
let f : unit -> unit = DLS.get at_exit_key in
f ()
let _ = Stdlib.do_domain_local_at_exit := do_at_exit
let startup_function = Atomic.make (fun () -> ())
let rec at_each_spawn f =
let old_startup = Atomic.get startup_function in
let new_startup () =
(* The domain creation callbacks ([at_each_spawn]) are run in
first-in-first-out (FIFO) order in order to be symmetric with the domain
termination callbacks ([at_exit]) which run in last-in-fisrt-out (LIFO)
order. *)
old_startup (); f ()
in
let success =
Atomic.compare_and_set startup_function old_startup new_startup
in
if success then
()
else
at_each_spawn f
(******* Creation and Termination ********)
let spawn f =
do_before_first_spawn ();
let pk = DLS.get_initial_keys () in
(* The [term_mutex] and [term_condition] are used to
synchronize with the joining domains *)
let term_mutex = Mutex.create () in
let term_condition = Condition.create () in
let term_state = ref Running in
let at_each_spawn = Atomic.get startup_function in
let body () =
let result =
match
DLS.create_dls ();
DLS.set_initial_keys pk;
at_each_spawn ();
let res = f () in
res
with
| x -> Ok x
| exception ex -> Error ex
in
let result' =
(* Run the [at_exit] callbacks when the domain computation either
terminates normally or exceptionally. *)
match do_at_exit () with
| () -> result
| exception ex ->
begin match result with
| Ok _ ->
(* If the domain computation terminated normally, but the
[at_exit] callbacks raised an exception, then return the
exception. *)
Error ex
| Error _ ->
(* If both the domain computation and the [at_exit] callbacks
raised exceptions, then ignore the exception from the
[at_exit] callbacks and return the original exception. *)
result
end
in
(* Synchronize with joining domains *)
Mutex.lock term_mutex;
match !term_state with
| Running ->
term_state := Finished result';
Condition.broadcast term_condition;
| Finished _ ->
failwith "internal error: Am I already finished?"
(* [term_mutex] is unlocked in the runtime after the cleanup functions on
the C side are finished. *)
in
{ domain = Raw.spawn body term_mutex;
term_mutex;
term_condition;
term_state }
let join { term_mutex; term_condition; term_state; _ } =
Mutex.lock term_mutex;
let rec loop () =
match !term_state with
| Running ->
Condition.wait term_condition term_mutex;
loop ()
| Finished res ->
Mutex.unlock term_mutex;
res
in
match loop () with
| Ok x -> x
| Error ex -> raise ex