-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLVQ.py
92 lines (82 loc) · 3.53 KB
/
LVQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class model(object):
def __init__(self):
"""
Inisialisasi class (constructor)
:min (array): Data minimum
:max (array): Data maximum
:label (array): Label data
:bobot (array): Bobot data
"""
self.min = [2, 5, 6, 9.47, 15.40, 4.37, 20.76]
self.max = [136, 145, 205, 42.92, 99.65, 8.75, 271.32]
self.bobot = [[0.51960041, 0.29535686, 0.17398024, 0.39742447, 0.79136829,
0.55574885, 0.94646941],
[0.5481731 , 0.27255562, 0.05880831, 0.39245013, 0.57166096,
0.42937728, 0.26799873],
[0.27844395, 0.46015617, 0.38354912, 0.30264184, 0.01468563,
0.45950717, 0.24101461],
[0.17745401, 0.39744164, 0.0746021 , 0.29141671, 0.0559883 ,
0.33549181, 0.36431371],
[0.21049004, 0.47259936, 0.0791285 , 0.58913546, 0.39608968,
0.34658478, 0.52111898],
[0.18216123, 0.34892531, 0.06030708, 0.55587112, 0.42428988,
0.82889699, 0.14319505],
[0.14381091, 0.369938 , 0.07350924, 0.57889131, 0.82850461,
0.5889982 , 0.10521353],
[0.32400528, 0.45794502, 0.04694031, 0.65720585, 0.55084997,
0.67309343, 0.24776019],
[0.12867096, 0.49880427, 0.0611555 , 0.40107903, 0.59595565,
0.60914402, 0.10579218],
[0.13031964, 0.09660164, 0.22043063, 0.35232786, 0.8713593 ,
0.48355157, 0.3347107 ],
[0.66630957, 0.59336023, 0.23522704, 0.52259519, 0.78473274,
0.3678178 , 0.33223293],
[0.14383926, 0.09184971, 0.13102044, 0.68951984, 0.41747537,
0.27665562, 0.32847903],
[0.17562558, 0.8882161 , 0.97153333, 0.79582336, 0.79431139,
0.34352782, 0.19794904],
[0.68242086, 0.12992479, 0.22276183, 0.47932085, 0.84269263,
0.48635491, 0.12568735],
[0.75701314, 0.13635248, 0.22185047, 0.58990257, 0.92029317,
0.44261492, 0.01305237],
[0.14120789, 0.91756349, 0.9939359 , 0.406742 , 0.93552776,
0.34552959, 0.39727848],
[0.09933643, 0.07184184, 0.01990075, 0.41497889, 0.90792412,
0.69373026, 0.3635956 ],
[0.39931911, 0.41051175, 0.2138201 , 0.80384929, 0.90870339,
0.57078457, 0.67558329],
[0.12934373, 0.06592468, 0.13261426, 0.53703606, 0.94469433,
0.32953995, 0.60812968],
[0.89250211, 0.27525857, 0.07281252, 0.45646583, 0.77479591,
0.57404606, 0.26733202],
[0.58114161, 0.23604086, 0.17230946, 0.45199751, 0.76967223,
0.46944961, 0.65738547],
[0.79810715, 0.16208719, 0.11530894, 0.42999708, 0.45686099,
0.56040897, 0.49726977]]
self.label = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
def normalisasi(self, data):
"""
Proses normalisasi data
:param data (array): Data
:return: Data yang telah di normalisasi
"""
for i in range(len(data)):
data[i] = (data[i] - self.min[i]) / (self.max[i] - self.min[i])
return data
def predict(self, data):
"""
Proses prediksi data
:param data (array): Data
:return: Data yang telah di prediksi
"""
data = self.normalisasi(data)
min_distance = float("inf")
min_index = 0
for i in range(len(self.bobot)):
distance = 0
for j in range(len(data)):
distance += (data[j] - self.bobot[i][j]) ** 2
if distance < min_distance:
min_distance = distance
min_index = i
return self.label[min_index]