-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainGstar.py
139 lines (112 loc) · 5.55 KB
/
mainGstar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import yaml
import time
import csv
import os
import pickle as pkl
import numpy as np
from graphutils import Graph_Gstar
from Gstar import GstarPaths, PlotGstar
if __name__ == "__main__":
# Set the time limit for the algorithm to execute
timeLimit = 600
# Set the initial number of sectors and starting and ending configurations
initial_Sectors = 3
start_conf = (0, 4.5, 0)
end_conf = (16, 4.5, 0)
# Specify whether the heading is restricted or not
heading_restricted = True
# Specify the list of radii to use for the algorithm
radius_list = [1, 2]
# Specify the paths to the instance files
instance_paths = ['./instances/map1']
# Loop through each instance path
for path in instance_paths:
# Load the tolerances for this instance from the YAML file
with open(path+'/tolerances.yaml') as toleances_yaml:
tolerances = yaml.load(toleances_yaml, Loader=yaml.FullLoader)
# Load the heading angles for this instance from the YAML file
with open(path+'/heading.yaml') as heading_yaml:
headingAngles = yaml.load(heading_yaml, Loader=yaml.FullLoader)
# Set up the result fields for the CSV file
result_fields = [
'name',
'path',
'Obstacles',
'turning_radius',
'continuity_tolerance',
'angle_tolerance',
'node_count',
'edge_count',
'eucLB_NoObstacles',
'dubLB_NoObstacles',
'eucLB',
'eucLB_time',
'dubLB',
'dubLB_time',
'dubUB',
'dubUB_time']
result_filename = path+'/results_' + time.strftime("%Y%m%d-%H%M%S")+'.csv'
# Open the CSV file and write the result fields to the first row
with open(result_filename, 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(result_fields)
# Loop through each instance path and file
instance_results = []
for (instance_path, dirs, files) in os.walk(path):
for f in files:
# Check if the file is a pickled Map object
if f.endswith(".pkl") and f.split('_')[0] == 'Map':
obstacle_count = instance_path.split("/")[-2]
obstacle_count = obstacle_count.split('_')[1]
# Load the Map object from the pickled file
# filepath = instance_path + '/'+f
filepath = os.path.join(instance_path, f)
m = open(filepath, 'rb')
Map = pkl.load(m)
for rho in radius_list:
print("\n--------------------------------------------------------------------------")
# print("Instance: ", instance_path + '/'+ f, " Radius: ", rho)
print("Tolerances: ", tolerances)
# Instantiate the Graph_Gstar object
G = Graph_Gstar(start_conf, end_conf, rho, initial_Sectors, tolerances)
# Set the image save path
imgPath = instance_path+'/img'+'/r_'+str(rho)
# Record the start time
start_time = time.time()
# if not os.path.exists(instance_path+'/graphs/G_r'+str(rho)+'.pkl'):
try:
# Calculate the GstarPaths
dubLB_path, Map, G = GstarPaths(Map, G, timeLimit, imgPath, heading_restricted, headingAngles)
# Plot the GstarPaths
PlotGstar(dubLB_path, G, Map, 'G* Lower Bound Path', save_path=instance_path+'/dub_LB_r'+str(rho), action='save')
total_time = time.time() - start_time
print('Time of execution: ', total_time)
except:
None
# Ensure the 'graphs' directory exists
graphs_path = os.path.join(instance_path, 'graphs')
if not os.path.exists(graphs_path):
os.makedirs(graphs_path)
# Save the graph to a file
graph_filename = os.path.join(graphs_path, f'G_r{rho}.pkl')
with open(graph_filename, 'wb') as f:
pkl.dump(G, f)
instance_data = [
f,
filepath,
obstacle_count,
rho,
tolerances['continuity'],
tolerances['angular'],
G.graph.number_of_nodes(),
G.graph.size(),
G.eucLB_free,
G.dubLB_free,
G.eucLowerBound,
G.eucLB_time,
G.dubLowerBound,
G.dubLB_time,
G.dubUpperBound,
G.dubUB_time
]
csvwriter.writerow(instance_data)