-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathQAPORTHALEQQ_QUAD.m
103 lines (84 loc) · 2.7 KB
/
QAPORTHALEQQ_QUAD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function [X, out] = QAPORTHALEQQ_QUAD(X, A, B, mu, opts)
%% ------------------------------------------------------------------------
% Quadratic Assignment problem:
% min Tr(XAXB), s.t., X'*X = I, X >= 0
% <E,X> = n
%% ------------------------------------------------------------------------
if isfield(opts, 'objX')
if opts.objX < 0 || opts.objX > 10
opts.objX = 1;
end
else
opts.objX = 1;
end
objX = opts.objX;
%Initialize
tol = opts.tol; tolsub = opts.tolsub;
optsub = opts;
%compute f and g
[m,n] = size(A); lmb = zeros(n,n); Axlmb = [];
lmb1 = zeros(n,1); Xen = zeros(n,1);
lmb2 = zeros(n,1); Xtn = zeros(n,1);
lmb3 = zeros(1,1); Xsn = zeros(1,1);
f = inf; fQAP = inf;
out.itrsub = 0; out.nfe = 0;
for itr = 1:opts.omxitr
fp = f;
[X, outs]= OptStiefelGBB(X, @ObjQAPALEQ_QUAD, optsub);
out.itrsub = out.itrsub + outs.itr;
out.nfe = out.nfe + outs.nfe;
f = outs.fval; fdiff = abs(f-fp)/(abs(fp)+1);
feasi = norm(min(X,0),1);
if opts.record
fprintf('itr: %3d, mu: %3.2e, fdiff: %3.2e, feasi: %3.2e\n\n', ...
itr, mu, fdiff, feasi);
end
if feasi <= tol
break;
end
lmb = max(lmb-mu*X,0);
% lmb1 = lmb1 - mu*Xen;
% lmb2 = lmb2 - mu*Xtn;
% lmb3 = lmb3 - mu*Xsn;
if feasi > max(tol,tolsub);
mu = mu*1.2;
% else
% mu = mu*0.8;
end
end
out.itr = itr;
out.fval = fQAP;
% AXB = (A'*X*B);
% g = AXB + A*X*B';
% % f = sum(dot(X,AXB));
% % f = trace(X*AXB);
% f = sum(sum(X.*AXB));
function [f, g] = ObjQAPALEQ_QUAD(X)
if objX == 1
AXB = (A'*X*B); %fQAP = sum(dot(X,AXB));
fQAP = sum(sum(X.*AXB));
g = AXB + A*X*B';
elseif objX == 2
X2 = X.^2;
AXB = (A'*X2*B); %fQAP = sum(dot(X2,AXB));
fQAP = sum(sum(X2.*AXB));
g = 2*(AXB + (A*X2*B')).*(X);
else
X1 = X.^(objX-1); X2 = X.*X1;
AXB = (A'*X2*B); %fQAP = sum(dot(X2,AXB));
fQAP = sum(sum(X2.*AXB));
g = (objX*(AXB + (A*X2*B'))).*(X1);
end
%Xen = sum(X,2) - n; Xtn = sum(X,1)' - n; %Xsn = sum(sum(X))-n;
Axlmb = X-lmb/mu; Idx = (Axlmb<=0); Axlmb(~Idx) = 0;
f = fQAP + sum(-lmb(Idx).*X(Idx)+0.5*mu*X(Idx).^2) ...
- 0.5/mu*sum(lmb(~Idx).^2); ...
% - lmb1'*Xen + 0.5*mu*dot(Xen,Xen)...
% - lmb2'*Xtn + 0.5*mu*dot(Xtn,Xtn); ...
% - lmb3*Xsn + 0.5*mu*Xsn^2;
g = g + mu*Axlmb; ...
% -repmat(lmb1,1,n) + mu*repmat(Xen,1,n) ...
% -repmat(lmb2',n,1) + mu*repmat(Xtn',n,1); ...
% -lmb3 + mu*Xsn;
end
end